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bility of error,
~
L, =P{Y# Y| D}
and L* for the Bayes probability of error,

Abstract
The classical k-nearest neighbor rule's perfor-
mance is scale dependent. The data dependent par-

titioning rules whose error probabilities are in-—

variant under monotone transformations of the
coordinate axes appear unnatural because of the

discontinuities inherent to all partitioning rules.

In this note a k-nearest neighbor rule based upon

the notion of empirical distance is discussed that
(1) is Bayes risk consistent for all possible

distributions of the observations,
(ii) has the desired invariance property.

Introduction
In several applications one would like, for

physical or economical reasons, to feed the freshly

collected data to some machine without prepro-
cessing. In discrimination for instance, a mere

rescaling of the coordinate axes has a serious im-

pact on the performance of the popular k-nearest
neighbor rulel™™. oOn the other hand, the k-
nearest neighbor rule is appealing because of its
simple definition, easy implementation and dis-
tribution-free properties for small samples5 6and
large samples’.
tion of the k-nearest neighbor rule whose perfor-
mance ( that is, the probability of error given
the data ) is not affected by monotone transfor-
mations of the coordinate axes. Such a modifica-
tion would save the user a tedious preprocessing
step and would save the manufacturer the trouble
of adding input specifications to his discrimina-
tion machine.

The data we have collected can be regarded as
a sequence of independent identically distributed

random vectors : Dn = (Xl,Yl),...,(Xn,Yn). Here

X E.Rd is called an observation and ch{l,...,M}

1
is called a state ( class ). If (X,Y) is distri-

buted as (Xl,Yl) and is independent of Dn’ then

in the k-nearest neighbor rule we estimate Y from
X and Dn by Y=gn(X,Dn) where

~
Y # i whenever

T _y< max 2 1 hasl o)
11§1k (Y, (0=1} )y om 1<5<k {v, (=2}

(Xl(X),Yl(X)),...,(Xn(X),Yn(X)) is a reordering of

the data according to increasing values of lXi—Xl

and I is the indicator function. The scaling of
the coordinate axes influences the rule through
the norm |.| . We will write L, for the proba-
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In this note we discuss a varia-.
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L* = inf P{g(X)#Y} .
g: rR{1,...,M}

stone’ showed that Ln B 1% in probability for
all possible distributions of (X,Y) whenever
and k/n % 0. (2)

Thus, the k-nearest neighbor rule behaves asympto-
tically well without exceptions. To ¢ ntinuedour
discussion, let us replace the Xi=(Xi,...,Xi)

and X=(X1,...,Xd) by
YD = D, v D)

PO = 0y KD, v D)

kgw

3

and

where wl,...,¢d are one-to-one monotone transforma-

tions from R to R. Examples are a dilation wl(u)=

au, a limiter ¢2(u)=u/(1+a|u|) and an expansion
w3(u)=exp(au). Writing D; for (¢(X1),Yl),...,
(w(xn),Yn) it is true that the Bayes probability
of error L*(¥) is independent of V¥ :

L*(y) = inf P{g(¥(X))#Y}= L* (4)
g:Rd+{1,...,M}

and that the conditional probability of error with
rule (1) and D; 2

L (¥) = Plg (4(X),D)#YID]} ,

varies with ¢ . Preprocessing of the data is
partly concerned with finding a transformation ¥
that tends to yield low values for L (¢). If such
a ¢ is a priori fixed, then Stone's theorem re-
mains valid ( that is, L_(¢) -+ L* in probability

if (2) holds ). But if V is found after we have
peeked at the data, can we still draw the same con-
clusion?

In essence, we are looking for a discrimination
rule with the following properties :
(1) L_(y) = L_ for all monotone transformations
n n
( see (3)),
(ii) L, B 1% in probability for all possible
distributions of (X,Y).
The impact of (i) is that preprocessing via scaling
or any other monotone transformation does not re-
duce the probability of error . while for finite n
this may or may not be an advantage, (ii) assures
that at least for large n the probability of error




is close to the Bayes probability of error. In
fact, (ii) implies that this asymptotically nice
behavior is guaranteed for all possible ( unknown )
distributions of (X,Y). 1In the next section we
develop a discrimination rule featuring (i-11)

which in form coincides with the k-nearest neigh-
bor rule. - A similar discrimination rule was recent-—
1y suggested by Olshen in a comment on Stone's
paper’.

A Universal K-Nearest Neighbor
Discrimination Rule
The k-nearest neighbor rule we are discussing
is based upon the notion of empirical distance. Be-
cause in general X does not have a density, all
sorts of situations involving ties can occur. For
instance, the event Xi=X% can happen with positive

probability. It is for this reason that we propose

to enlarge the data by generating Z,Zl,...,Zn , a

sequence of independent random variables, indepen-
dent of (X,Y,Dn), and all uniformly distributed on.

(0,1). The data Dn=(X1,Y1,Zl),...,(Xn,Yn,Zn) is

then reordered according to increasing values for
the empirical distances p((Xi,Zi),(X,Z)) between

(Xi’zi) and (X,Z) defined below. Notice that from
here on Dn denotes the enlarged data sequence. The

reordered data sequence is (X, (X,Z),Y (X,Z),ZI(X,Z))
,...,(xn(x,z),yn(x,z),zn(x,zﬁ. Sincd p is'in-

teger-valued, we will use the values of lZi—Z| to

break ties in this reordering process. This has
the same effect as reordering Dn according to in-

creasing values of the adjusted empirical distance
o' ((X;524), (X,2))=p((Xy,2), (X,2))+|24-2].

To define p first order the (Xi,Zi) and (X,Z)
according to increasing values of their first com-

) I {

ponents, xi,x;,...,xn,x . If ties occur, subse-

quently break them by considering increasing
values for the Z1 or Z. Let ri be the rank of

(X,,Z,) and let r1 be the rank of (X,Z). Repeating
g1

the same procedure for the remaining d-1 components
gives us values for

ri ’ rj , 1 <j<d, 1<1<nm.
We define

p((xi’zi)a(xsz)) = max
1< j< d
In Figure 1 the empirical distances are given in
an example with no componentwise ties and d=2. The
physical meaning of p((Xi,Zi),(X,Z)) in that case

|x3-r]. 5)

is very simple : the empirical distance is the
maximal number of lines in the d-dimensional grid

generated by the Xi that one can cross or touch if

one wants to go from X to Xi along one of the co-
ordinate axes.

It is easy to check that for all transforma-
tions (3)

p((W(xi),Zi),(w(x),Z))=p((xi,Zi),(X,Z))
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and that therefore the desired invariance property
(1) holds true for all discrimination rules g, that

are functions of the empirical distances only.

Consider zpr instance the rules in which Y is
estimated by Y = gn(X,Z,Dn) where .

~

Y # 1 whenever i (6)
Z v,I _q1< max 2 v,I =0}?

1<j<n 3 {Yj(X,Z) i} 1<2<M 1<f<n 3 {Yj(X,Z) 2}

and the weights vl,...,vn vary yith n such that :

Vi2Vy 2 e 2V, 203 Y v, =13 -

sup v, 30; (8)
i

Z v. 3 0 for some k with k/n 3 o. 9)
i
k<i<n

Picking the weights v1=v2=...=vk=1/k , and v1=0

otherwise,yields a rule that equally weights the
k nearest neighbors.

In the next section we prove the following
theorem. *

Theorem. For all rules satisfying (6-9),.Ln 3 x

in probability. This property is valid for all
distributions of (X,Y). i

Olshen, in his comment on Stone's paper7 .

announced a similar theorem for this class of rules
under the additional restriction that all the
marginal distributions of X are atom-free ( which
in effect eliminates the possibility of ties ).

In the proof of our theorem we will follow the
train of thought of Stome's proof of his corres-
ponding theorem for the classical k-nearest neigh-
bor rules.

Fkkkkkkkkkkrkhkkhkhkkkkkkhkkkkkhkkhkhkhkhkkkhkhhhhhkkhkk



Remark 1. ( A generalization ). Instead of Dn
one can of course use D; which is obtained from
Dn by considering (¢(X1),Yi,zi) instead of

<xi’Yi’Zi)' Here ¢ is an a priori given but
d d'

otherwise arbitrary mapping frm R™ to R . We are
thinking of some applications in which some non-
linear functions of X play an important role. If
¢ 1is a one-to-one mapping, the Bayes probability
of error remains unchanged. In particular, this
is always the case if ¢=(¢1,...,¢d,) is such that

a* > d, ¢1(x)=x1,...,¢d(x)=xd and ¢d+1""’¢d'

are arbitrary real-valued functions on R4, The
theorem stated above remains valid for this inter-
esting case.

Remark 2. ( Related work on statistically equi-
valent blocks ). Based on the theory of statisti-
cally equivalent blocks ( Anderson® ) several dis-
crimination rules can be found in the literature
that also enjoy the énvariance property (1)9-13,
In all these rules R 1is partitioned into
rectangles on which Y-is constant. The size and
location of the rectangles is data-dependent. In
the simplest case ( d=1 ) the real line is divided
into k parts by the (1/k)-th, (2/k)-th, ..., (k-1/k)
-th quantiles of Xl,...,Xn. On each interval

gn(x,Dn) is constant and its value is determined
by a majority vote among the Yi for which Xi is in

the same interval. Gordon and Olshen!3 show that
this simple data depemdent histogram rule satisfies
(11) 1if k> = and k/n > 0 as n > « . The ex—
perimental results reparted by Gessaman and Gessa-
manll seem to indicate that these rules are strong
both where computer time and performance are con-—
cerned. Practical ways of generalizing the histo-
gram rules for d > I and make the rectangular par-
tition depend upon the Yi as well as the Xi are

proposed by Henrichom and Fulk,Meisel and Michalo-
poulostsLEriedmanlz and Gordon and Olshenl3. Return
to the casg~§=1. For any new observation X the
decisiom (Y ) is based upon the approximately

n/k states ( mamely those that correspond to
observations im the fnterval-X is in ). In general
X is not the median of the observations in that
interval. In comtrast, with the (n/k)-nearest
neighbor version of (6), X is the median of those

Xi's ( X is included ) whose states Yi are taken

into consideration in (6). One might therefore
expect a slightly superior performance from the
rules suggested in this note.

Proof of the Theorem

Consider the regression functions of the indi-

caFors I{Y=i} on X,

py(x) = E{I{Y=i}lx=x}= P{Y=1|X=x}, 1<i<M.
These functions are not uniquely defined, but it is
always possible to find pl,...,pM that are Borel
measurable and that satisfy

0<p, (x)<l, all 1,x, and § p,(x)=1, all x.
* 1<i<M

~
Clearly, all discrimination rules of the form Y=

g(X) where
g(x)#1i whenever
pyEx) < max Py (%) (10)
1<2<M

are Bayes ( i.e., they achieve L* ). If the un-
known p, are estimated from the data by Py and

if the condition (10) is replaced by
gn(x,Z,Dn)#i whenever

p_.(x,2) < max p_,(x,2) (11)
o 1<a<y F '

then, regardless of the estimation procedure of the
Poy> the following inequality is valid.

Inequality 1. When g, satisfies (11) then

L -1x <2 ¥ Ellp,(®)-p  X2)|ID)

he }iiiM
= lezsy g lPi(x)—Pni(x,z)lu(dx) F oo 12)

Here y 1is the probability measure of X.
Proof. Since L*=E{l-max pi(X)} and
i

%=Pw#LL%#ﬂ%thw%meJ@H%}

we have
=%k |= -’
an L*| E{maxi p, (X) pSn(X’Z’Dn)(X)ID“}

= E{max pi(X) - max pni(X,Z)IDn}
1 1 v
+ E{mix pni(X,Z) - pngn(X,Z,Dn)(x’Z)an}

*+ Bl (x,2,0) %P~ Pg_x,2,0,) ® 1P}

< § Ellp,®-p  (x,2)|[D )} + 0

S5 oy [
+ E{|p, X)-p_,(X,2)||D_} .
1<i<M i ni n
Q.E.D.
We recall that a discrimination rule ( that is,
a sequence of mappings g ) is weakly
Bayes risk consistent ooyf Ln—L* + 0 in probabi-
lity as n »~ ». From inequality 1 we conclude that
this is true whenever for all i, :

- 3
E{|p, (X) p_; (X,2)[} % 0.
By Jensen's inequality it suffices that for all i
= 2,1
E{(pi(X) Pni(X,Z)) } > 0.

Now, the rules of the form (6) are obtained from
(11) if one replaces pni(x,z) by

S— v =2v 1 _ .
337, (e, 2)=1 3 g 3AYy 2 43

Thus, if we define Y3=I{Yj=i} ( where 1 is fixed )

and if
m(x) = p;(x) = E{Yilxl=x}
and
mn(x,Z) = Pni(x’z) = lf}f_n Vj k] s

then we need only show that
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ﬂmnﬂmmf}ﬁm (13)

The crucial results needed to obtain (13) for
all possible distributions of (X,Y) are gathered
in the inequalities 2 and 3 below. Inequality 3
is essentially due to Stone”. "If'al,...,aé;a afe
eiemehtéﬂof Rdx [b,l 1] 3

cj(a;al,...,aN) =V,

then let ~

where aj is the i-th nearest neighbor ( in the sen-

se explained above ) to a among a

Inequality 2.

ments from RdvE),l] and 1if vlzvzi...zvnio then

1<§kn ci(ai;al,...,ai_l,a,a1+1,...,an)

17708yt
If 2,8;500058) are different ele-

< 2y ¥ : (14)

1<i<n
Proof. Let aj—(aj(l),...,a (d+1)), a=(a(l),...,

a(d+1)).

Partition RdyE),l into 2d quadrants cen-
tered at a in the following way.

If the quadrants

{+,—}d, then a, is

are indexed by the elements of 1

in the quadrant (+,+,+,...,+) if for all 1<j<d
al(j)>a(j) , or al(j)=a(j) and al(d+1)>a(d+l).

( Thus, the last components are used to take care
of the ties.) If Qj is the j-th quadrant, we

find the points b .,bN from among a ,a

1 12008,

that are in Qj' The crucial observation is that

if b1 is the k-th nearest neighbor to a ( from bl’

.,bN ) then a is at least the k-th nearest neigh-

bor to b1 ( among a’b2""’bN)' In view of the
monotonicity condition on the v, we have
125 ci(ai;al,...,ai_l,a,ai+1,...,an)
A
< Ve g (ysbseasby aby e, by)
1<1<N i’71 1 i+1 N
s o) ey (a; bl, ..,b y= ¥ Yy = v vy
1<i<N 1<i<N 1<i<n
This bound does not depend upon j,a,al,...,an.
Since there are Zd quadrants, (14) obtains.

Q.E.D.

Inequality 3. Let (X,Z5¥); (X Zl,Y ),...
(X Z 3 Y. ) be iid random vectors from R x[o 1]xR

and let Z be independent of (X,Y) and uniformly
distributed on [0,1]. If (v)s---sv,) satisfies

(7) then
B(] ¥ e ((X,2)5(X,2)),00, (X 22 )Y, [P}
1<i<n
<EC Y e ((X,2)5(X,2)),0 00 (X2 DY, [P)
1<i<n
< 22E(yPr  L,p21. (15)
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Proof. The first inequality follows from Jensen's
inequality. 1Inequality 3 now follows from Inequa-
1ity 2 and the fact that (X,Z,Y) and the (xi’zi’Yi)

are independent and identically distributed :

P
E{ Ve ((X2)5(XhZ )50 ees (X2 DY, [T)

1<1<n

= % Ble, ((X,2)5(2,,2,)5 050 (o203 |1, 1P
1<i<n

= ¥ Ele, ((%,,2,)5(%.,2)),..

y (X152, 1)
l<ien 1-1"%1-1

(%,2),. .5 (X ,2.0) |1[P)
d

<2° ¥ v, E(|¥[P) = 29(]¥|P).
Lsten Q.E.D.

Return to the proof of the Theorem. The re-
gression function m ( which is essentially toun-
ded ) can for any € > 0 be approximated by a
bounded continuous function h such that

E{|hX)nX)|P} =/ |h)-mx)|Pu(dx) < e .
See Dunford and Schwartz‘s,pp. 298. By the e, -

inequality ( Loevel7,pp. 155 ) we have

Ir |ﬁ (x,;)—m(x)lpp(dx)dz

=1/ | 2 C (X,Z) Yi, -m(x)lpu(dx)dz
1<i<n
< 4p-1(U +U,+U,+0U) (16)
e 1 2 3 4 -
where

C 4 (xs2)=cy ((x,Z);(xl,Zl),-

u =Y c G2 @ )-h(x)) [Puax)dz ,

1<i<n

v s R 2 Y, 1sten,

(=
n

7l Y e (x,z)h(xi)—h(x)lpu(dx)dz 1
1<i<n

J |hG)-m(x) |Puax) ,

(=]
]

u, = E{|

4 PR Te S TeHMILIIE 2

1<i<n

U3 is small by choice of h.

E{U,} =

Next, by Inequality 3,
29 E{|nx)-hx) [P} ,

which again can be made arbitrarily small. For
p > 2, the term E{U } is estimated as follows :

E(U,} = E{E{ c . (X,2)|Y'-n(x,)|P|p_}}
Q- ] e enlyeo P,

< K(p) E{E{| } c? 1 (%:2) (Vm (X)) IP/2|D 1
1<i<n =
( for some K(p) > 0 by the inequality of
Marcinkiewicz and Zygmund ; see also
Petrov!®,pp. 59-60 ).
<uw@wv>”%ﬂi ¢, %,2) (), )7 [P/2)
1<i<n

< K(p)(sup v )p/zE{ Y C 4 X, Z)IY -m(X, y|P}
i 1<i<n



( by Jensen's inequality )
< 29 k(p) (sup v )p/ZE{IY'—m(X )Py
— 1 i 1 1

( by Inequality 3 )

< 22 k@) (sup v,)P/? an

i
( since here Yi is {0,1} -valued,
and thus lYi—E{Yi]X1=x}L: 1 for
almost all x.)
Thus, E{U4} 3o from (8). We need only show that
E{UZ}
functions h.

W
n

tends to 0 for all bounded continuous
If we define

P
C_ ;(x,2) ]h(Xi)—h(x)]

¥

1<i<n
then we need only show that Ir Wi(x,z)p(dx)dz 3
in probability. Actually, we will show more :
Inequality 4. Let h be a bounded continuous fun-
ction on R? and let (vl,...,vn) be a probability

vector satisfying (9). For every €>0, p>1 there

exist a,B,y > 0 such that
1

P{IS W (x,2)u(dx)dz>ed<a e B2, a1l n > y.
0

Proof. Define the following ordering on RxE),l]:

(xl,zl) 4{(x2,z2) if X <x,, or X)=Xy,2,<2,.
The relation (xl,zl) :S
case xl=x2 » zl=zz. For any sequence from Rx[b,ﬂ ’
sgy (xo,zo){(xl,zl)< A <(xN’zN) the se; BJi
R x'_z),l] is defined as the set of all (x,.
z) with the property that

(xi—l’zi—l) _{ (xj,Z) £ (x452,)-

(xz,zz) also includes the

from

d
e s X"y

For a given number c€(0,1) and for each F=l IS, 5 d
we find numbers (xo,zo)<(x1,z1)1ﬂ..((xN,zN) with

the property that
P{ (x,z)enji} =c/N , all i=1

felar A v

Thus, if N d
Bj=iL=jlnji, B=jf=\IBj 5
(X,2) €éB,} =

all "bad" cylin-
To start with,

then it follows that P{

In the proof we will group
der sets Bji together in a set B*,
we include the border strips le’sz’Bj N-1 and
BJN for all j. We also include all the Bji'whose
length ( that is, xi—xi_1 ) exceeds & >0 . Notice
31 with

can not exceed

C.

that for fixed j the number of strips B

length greater than or equal to §
T/6 + 1 where

T = max

(x,.-x.).
1<j<d %o

e et s o S B i e A
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In addition we include Bj 1-1° BJ 1-2° Bj 141 and

- *
Bj 142 whenever 2<i<N-2 and Bji already is in B*,

that is, for every strip whose length exceeds § >
we include in B* the four neighbouring strips as
well. Repeating this for all 3}, we obtain,

P{(X,Z)eB*}< d (4+5+5T/8) (c/N). (18)

ANrectangle C is defined as a set of the form
d
1(31 B, g (11,000 ,10€(1,. .., N9,

Pick k as in (9) and construct a set B** by taking
the union of all the rectangles C for which
P{(X,2)€C} <6 + k/n where 6 > 0 is a number to be
determined further on. Clearly,
P{(X,Z)€B**} < v P{(X,2)ec}
rectangles C with
d P{(X,z) C}<6+k/n
< N (6+ k/n).

If H=suplh(x)| and ( )€ denotes the complement of

a set,lthen "
S T (x,2)u(dx)dz < (2H)PP{(X,Z)eB UBruBa*)
0
+ [/ W (x,z)p(dx)dz (19)
BaB*“npx*S 1

The first term on the right hand side of (19) can
be estimated by

(2H)P d(1-c) + d(9+51/8)c/N + No(6+ k/n)  (20)

where we used the fact that P{(X,Z)¢B}< d(l-c) .
Now, (2C) is smaller than €/2 for all n large
enough. First pick ¢ close enough to 1 to take
care of d(l1-c). This fixes the value of T. 1If &
is given, then we van pick N large enough to make

the second term as small as desired. Finally
choose 6 s0 small that Ndo 1ig small, and use (9)
to conclude that Ndk/n + 0 as n + ® . The only

|
|
parameter that can still be assigned an arbitrary i
value is .§.

|

The measure induced on the Borel sets of Rd.E),g

by u(dx) dz 1is called v . The empirical measure
Vo of a Borel set SSRAfO,I] is defined by |

-1 . |
v(8)=n" ¥ 1 -
o 1<i<n ((%4524) 8} :
Let E1 be the event that for all (Nd) rectangles C,
lv(C)-vn(C)| <0 {
and that for all (Nd) cylinder sets B
]\)(Bji)—vn(Bji)l < c¢/3N.

Let us fix (x,z)e CnB*an**C,
hplds for (Xl,Zl),...,(Xh,Zn).

the empirical distance between (x,z) and any of the
(Xi,Zi)é C 1is less than

n (¢/N + c¢/3N)
because by definition v(Bji)=c/N for' all §,4.
= Y=
Next, if C B1 i{\BZ i;\...an id and C
ety )
B, 0B, 15”"'“Bd 1 with m;x lij 1j|>2, and

i i

and assume that E

In that case 1

1
if (xi,zi)ec', then its empirical distance to (x,2z)



AN\

is at least equal to
2n (¢/N - ¢/3N) = n(c/N + c/3N).
Therefore, all the (Xi,Zi) in C are nearer neigh-

bors of (x,z)EC than any (Xi,Zi)EC'. But if E1
holds, then .
vn(c) >v(C€) -86> k/n+86-86 =k/n,

that is, more than k of the (Xi,Zi) belong to C.

This in turn implies that all the k nearest neigh-
bors to (x,z) are in
d

N @ VB UB, . UB uB Yy

1.=2 1.=1 1 -+1 B o
g=1 3 472 3 4L 3 LER
By the construction of B* it is true that under
the maximum component norm |.| 5

X, (x,z)-x| < 3 6, 1<i<k.
i -— — g

Since we can still pick 6 , we pick it so small
that

_sup [nx)-h(y)| <e/4 ,
(x,2z)€B; (y,z)¢€B
x-y| < 38

which is possible by the uniform continuity of h
on the closure of the projection of B on Rd, Thus,

if E, holds,

sup W (x,z)
(x,z)EBnB*Cp*xS T

< (e/4) Y v, * P v,
1<i<k k<i<n
< €/2 for all n large enough. (21)

From (19) and (21),

)|
P{SS W (x,z)u(dx)dz > € }
0. 2 -

< P{ Ir
BrB*nB**©
< P{E} < Y
rectangles C

Wn(x,z)u(dx)dz > €/2}

P{Iv(c)-vn(C)Izﬂ}

+ j;iP{lv(Bji)—vn(Bji)|39/3N}
2 2,42
e 7l e Y 4 0 i e 0 IR

where we used Hoeffding's inequality for the
sum of independent {0,1}-valued random variables??,
This concludes the proof of Inequality 4.

Q. E. D.
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