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Introduction.

In this note, we study binary search trees formed by consecutive insertions of
numbers {6}, {20}, {36},..., where # € (0,1) is an irrational number, and {.} denotes
“mod 1”. The sequence in question is called the Weyl sequence for 6, after Weyl, who

showed that for all irrational # the sequence is equi-distributed. We recall that a sequence
T, n > 1, is equi-distributed if for all 0 <a < b <1,

1 g
nh—)rgo ﬁ ; [xie[a,b] =b—a

(see Freiberger and Grenander (1971), Hlawka (1984) or Kuipers and Niederreiter (1974)).
Mike Steele has pointed out that the credit should perhaps go to Bohl (1909), but we will
nevertheless retain the commonly accepted name of Weyl sequence.

The equi-distribution property makes Weyl sequences, or suitable generalizations
of them, prime candidates for pseudo-random number generation. Of course, various regu-
larities in the sequence make them rather unsuitable for most purposes. Knuth (1981) and
S6s (1983) have interesting accounts of this. Let 7,(6) be the binary search tree based
upon the first » numbers in the Weyl sequence for . This tree, called the Weyl tree,
captures a lot of refined information regarding the permutation structure of the Weyl se-
quence, and is a fundamental tool for the analysis of algorithms involving Weyl sequences
in the input stream. Computer scientists are mostly concerned with the following struc-
tural qualities: the average depth of a node (the depth is the path distance from a node
to the root), the height (the maximal depth), and the number of leaves (the number of
nodes with no children).

The discussion in this paper focuses on these quantities. The following notation
will be used. The height of 7,(0) is H,(0). The set of leaves of T,(0) is L, (). The
collection of n + 1 possible positions for a new node to be added to 7,(#) is called the set
of external nodes, and is denoted by &,(f). When 6 is understood, the suffix (6) will be
dropped from the notation. The collection &, may be split into £F and €L, where £F has
those nodes that are right children, and £F collects all left children in &,.

In the first half of the paper, we look at the structure of a Weyl tree for fixed 6.
Crucial connections are made with the continued fraction for #. Well-known properties
of continued fractions then permit us to deduce results about H,, and |L,| without too
much trouble.

In the second half, we look at random Weyl trees, that is, binary search trees
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for @ = U, where U is a uniform [0, 1] random variable. This study allows us to make
statements that are true for almost all . The probabilistic setting comes in handy for
the purpose of analysis. The main result of the section, for example, shows that
L — 12 in probability.
logn loglogn w2
This shows that the random Weyl tree differs greatly from the standard random binary
search tree, R, obtained by insertion of an i.i.d. uniform [0, 1] sequence X7, ..., X,. We
recall that the height H! of R, satisfies

!

- — 4.31107... almost surely
logn

(Robson, 1977, 1982; Devroye, 1985, 1986; Mahmoud, 1992).

Structure of Weyl trees.

In this section, an irrational # is fixed. Let
1=T<Ty<---

be the record times, i.e., the times at which z,, = {nf} is minimum or maximum among
Z1,...,%,. The times of occurrence of a minimum or maximum are denoted by L, and
R,, and the indices of these sequences are synchronized with the 7;’s as follows:

(L 1) =

As it turns out, there is a lot of structure in these sequences. The fundamental property

(Ln1,T,) if at T, there is a maximum,;
(T, Ry—1) if at T, there is a minimum.

in this respect is the following.

LEMMA 1 (ELLIS AND STEELE, 1981). We have
(L. Ry) = { (L1, Ly 1+ Ry 1) 1:f at T,, there 1:5 a m?zx‘imum;
’ (Lp1+ Ry 1,R, 1) ifatT, there is a minimum.
Let k be the smallest integer such that n < Ly + Ry. Then, if x4y < ... < x(,) denotes
the ordered sequence for xy, ..., z,, then the indices (1),...,(n) coincide with

{Lk,2Lk,3Lk,...} (mod (Lk—i—Rk))ﬂ{l,,n} .

Also, (Ly, R,,) are relatively prime for all n.




A quick verification: if n = Ly + Rr — 1, then the index of the maximum is
(Ly + Ry — 1)Ly, (mod (L+k+ Ry)) =—Lr (mod (Ly + Ry)) = Rg, as was expected.
This Lemma says that at n = Ly+ Ry —1, the shape of the binary search tree for zy,...,x,
is entirely determined by the two numbers Lj, and Rj. In fact, then, there are only O(n?)
possible Weyl search trees with n elements, even though there are —- (*") = ©(4"/n?/?)
possible binary search trees on n nodes. As the simplest, example, of the five binary search
trees on 3 nodes, two are impossible to obtain as Weyl trees (the ones in which the root has
one child and the child has one child but of different polarity). This fact was used by Ellis
and Steele to derive a method that would sort any Weyl sequence using comparisons only
(thus, without being capable of numerically inspecting entries) in O(logn) comparisons.

We refer to the subsection on sorting later on in the paper.

There is a natural way of looking at the growth of the Weyl search tree in layers.
The (i + 1) — st layer consists of all z; with 7; < j < T;,; — 1. A special role is played
also by the ancestor tree 77._;. A layer can be considered as a new coat of leaves painted
on the ancestor tree. Each layer adds one and just one coat, as the next Lemma explains.

LEMMA 2. All nodes in the (i + 1)-st layer are leaves, and all leaves of Tr,,, , are in the
(i +1)-st layer. All nodes in the (i+ 1) — st layer are either right children or left children,
but not both. In fact,
|81L}+171| = RZ ) |g£+171| = Li )
and
Tr 1| =Tipn —1=Li+ R — 1.

PROOF. Recall that L£7;_; is the collection of leaves of the ancestor tree, and that the
left. and right external nodes of the ancestor tree are collected in sets £f_; and EF_,
respectively. Fix j € {T;,T; + 1,...,T;41 — 1}, so that j is an index of a point in the
current (i + 1)-st layer. Without loss of generality, assume 7; = R; (the last record was a
maximum). Thus,

To determine the place z; occupies in the search tree, it is important to find out which
points are the immediate predecessors and successors of ;.
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Consider first the immediate predecessor of x; in {zy,...,z;_1}. By Lemma 1, the
index of this node is
Jj—Li+k(R; + L;)
for some integer £ > 0. But
J+R>j+Li >R+ L,

so k must be 0, and thus, the index of the immediate predecessor is j — L;, which is in
the ancestor tree, as j > L; and j — L; < R;.

Similarly, the immediate successor of 7 has index
J+ L — k(R + L;)
for some k£ > 0. It cannot have index j + L; as
j+L;>R;+L; .
Thus, it must have index j + L; — (R; + L;) or smaller, i.e., j — R; or smaller. But
j— R <L;+R,— R, =L; < R;,
so that j — R; belongs to the ancestor tree (if j — R; > 0) or is nonexistent (if j = R;).

Thus, the immediate neighbors in the ordered sequence have indices that put them
in the ancestor tree (the right neighbor may not exist if j = R;). As L; < R;, it is clear
then that j is a right child of its left neighbor. Note also that at the end of the construction
of the (i 4+ 1)-st layer, all nodes in it are leaves, and are right children of nodes in the
ancestor tree. Thus, the (7 + 1)-st layer paints a collection of leaves on the ancestor tree.
In fact, it destroys all existing leaves of the ancestor tree, as we will now prove.

We prove by induction the following:

+1—1| = )
As

Trp 1| =Tig1 —1=Li+ R — 1,
we verify that indeed, at all times, the number of external nodes is equal to the tree size
plus one. The statement is quickly verified for i = 1 as Ly = Ry = 1, T, = 2, and T}
has one left and one right external node. Assuming the hypothesis to be satisfied for
j < i, we look at the (i 4 1)-st layer. All nodes in this layer are leaves of 7r,,,_y, and if
T; = R; (without loss of generality; a symmetric statement for 7; = L; is easily obtained
as well), then all these leaves fill right-external nodes of the ancestor tree 77,_;. But by
the induction hypothesis,
EF | =Lii=1L;.
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Also, the (i 4+ 1)-st layer has size
Timi—Ti=Ri+Li— R =1L,

so that we can conclude that all right-external nodes of the ancestor tree are filled in. But
then,

3

R
|5T‘+171| = Ll ?
which was to be shown. Because all left externals survive from the ancestor tree,

|57€ L; + |5:ﬁ—1| =L, +Ri1=R;,

+1—1| =

and the proof is complete. [J

LemMmA 3. We have
L1y, -] = min(Ly, R;)
and
Hp, 1=1.
Put differently,
k—1<H,<k

if k is the unique integer with Ty, < n < Tjp41.

PROOF. The first statement is an immediate corollary of Lemma 2. Also, as each layer
destroys all the leaves of the ancestor tree, it is clear by induction that the height of the
tree is exactly equal to the number of layers minus one. O

The study of the height and of the number of leaves reduces to the study of the
sequence (L;, R;). For the height, the growth of T} as a function of k is important. This
is closely related to the continued fraction expansion of #. To understand the rest of the
paper, we recall a few basic facts from the theory of continued fractions.



Continued fractions.

Let 6 be irrational, and define the Weyl sequence with n-th term =, = {nf}, n > 1,
where {.} denotes the “modulo 1” operator: {u} = u—|u]. Denote the continued fraction

expansion of € by

0: [ao;Cbl,CLQ,...] s

where the a;’s are the partial quotients, a; > 1 for i@ > 1 (see Lang (1966) or LeVeque
(1977)). Thus, we have

0 =ao+1/(ar +1/(az+---)),
with ag = [#]. The i-th convergent of 6 is

i = [ao;ay, ..., ai] .

It can be computed recursively as
Di
ryi=—,
4;

where ged(p;, ¢;) = 1, and

po=0,p 1 =1pi=api1+Dpi2,1>0,
and

g—2=1,q-1=0,¢; = a;q;—1 + qgi—2 , 1 > 0.

Note that rq = ag and 1y = ag+1/ay. The r;’s alternately underestimate and overestimate
6. The denominators ¢; of the convergents play a special role as

l=¢p<qgg<¢gp<---

and

1
<

< , >0
qiq9i+1

‘_&
qi

To study the number of records and the the evolution of the layers, the following
result is essential. It extends a theorem of Lang (1966).



LEMMA 4 (BOYD AND STEELE, 1978). In a Weyl sequence for an irrational 0 with
partial quotients a,, and convergents p,/q,, the right extrema occur when n is in the
following list

q-1+ o, 4—1 + 2qo, - - -, g—1 + a1Go = qu;

G+ q2,q1+ 22, ..., q1 + G3G2 = G35

43 + Gas @3 + 244, - .., g3 + A5G4 = G5;

and the left extrema occur when n is in the list
do + q1,q0 + 2q1, ..., qo0 + a2q1 = qa;

G2+ q3,G2 + 243, . . ., q2 + 43 = qu;
qs + q5,q4 + 2G5, . . ., q4 + G645 = G6;

Lemma 4 shows that we start with a; right extremes, followed by as left extremes,
then a3 right extremes, and so forth. This description, together with Lemma 1 and Lemma
2 should suffice to completely reconstruct the shape of the tree (see figure 1).
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Figure 1. This figure shows the Weyl tree for § = /77 = [8;1,3,2,3,...].

Note that

g =1, =1,90 =4,q93 = 9,q, = 31. Layers are separated by wiggly lines. Thicker lines

separate layers of different polarity. Note that there are first a; layers of right polarity,
followed by as layers of left polarity, and so forth. Also note that just before an extremum,

all leaves may be found in the last layer. The z-coordinates of the points are geometrically

exact, to facilitate interpretation. Using Lemma 1, can the reader guess who the parent

is of point 417 0



Height of random Weyl trees.

From Lemma 3 and Lemma 4, we easily determine the relationship between height
and partial quotients.

PROPOSITION 5. Let 8 be irrational. Let k > 2. If n = g, — 1, then there are exactly

k
Zai -1
=1

full layers, and the Weyl tree T,, has height

In general, if

Qe <n < Qi1 ,
then
k k41
i=1 i=1

DisCcREPANCY. There is another field in which the behavior of the partial sums S, =
>°r | a; matters. In quasi-random number generation, the notion of discrepancy is impor-

tant. In general, the discrepancy for a sequence xy,...,x, is
n
S
D,, = sup M_)\(A) :
AeA n

where A(.) denotes Lebesgue measure, and A is a suitable subclass of the Borel sets. For
example, if we take the intervals, then (Schmidt, 1972; Béjian, 1982)

0.12logn
n

D, >

infinitely often. From Niederreiter (1992, p. 24), we note that for a Weyl sequence for
irrational 6,




where [(n) is the unique integer with the property that

Qin) <N < Qunyt1 -

For example, Niederreiter’s bound implies that if 6 is such that Y., a; = O(m) (as when

D, =0 <logn> .
n

Thus, Weyl sequences with small partial quotients behave well in this sense. We will see

all a;’s are bounded), then

that the same is true for random search trees based on Weyl sequences. [J

Partial quotients of random irrationals.

Now, replace # by a uniform [0,1] random variable, and consider its continued
fraction expansion. Several results are known about this, and most may be found in
Khintchine (1963), Philipp (1970) or the references found there.

LEMMA 6 (THE BOREL-BERNSTEIN THEOREM). For almost all 0, a, > ¢(n) infinitely
often if and only if ) 1/¢(n) = oo. (Thus, if § is uniform [0, 1], then with probability
one, a, > nlognloglogn infinitely often, for example.)

This shows that the a,’s necessarily have large oscillations. The result can also be
used to show that certain subclasses of #’s have zero measure. Examples include:

A. The #’s with bounded partial coefficients. The extreme example here is § = (1 +
V/5)/2, which has ap = a; = ay = - -+ = 1.

B. The #’s that are quadratic irrationals (non-rational solutions of quadratic equa-
tions). It is known that the a;’s are eventually periodic and thus bounded (in fact,
the periodicity characterizes the quadratic irrationals, see IKKhintchine, 1963, p. 56).
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LEMMA 7 (KusMmiIN, 1928; LEvVY, 1929). Let z, denote the value of the continued
fraction
0t o]

(That is, z, = rp, — a, = {r,}, where

rn = [ana Up+1y Op42y - - ] )

Then, if § is uniform [0, 1], then z, tends in distribution to the so-called Gauss-Kusmin
distribution with distribution function

F(z)=log,(14+2z), 0<x<1.

This limit theorem is easy to interpret if we consider convergents. Indeed, ro = 8,
and in general, a,,1 = [1/z,]. Thus, Lemma 7 also gives an accurate description of
the limit law for a,. In fact, as a corollary, one obtains another result of Lévy (1929),
which states that the proportion of a;’s taking value k tends for almost all § to a finite
constant only depending upon k. If § is uniform [0, 1], then a; = [1/0] is a discretized
version of a uniform [0, 1] random variable. As n grows, the distribution gradually shifts
to a discretized version of one over a Gauss-Kusmin random variable. As the latter law
has a density f(z) = 1((1 + z)log2) on [0, 1] which varies monotonically from 1/log2 to
1/log4, for practical purposes, it is convenient to think of the a,’s as having a law close
to that of 1/U. For example, the Borel-Bernstein law holds also for the sequence 1/U,
where Uy, Uy, ... are i.i.d. uniform [0, 1].

There is stability if we start the process with # having the Gauss-Kusmin law,
just if we were firing up a Markov chain by starting with the stationary distribution: if
f has the Gaus-Kusmin law, then all z,’s have the Gauss-Kusmin law, and all the a,’s
have the same distribution (however, they are not independent; in fact, Chatterji (1966)
showed that any law with independent a,’s corresponds to a random # with a singular
distribution.)
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LEMMA 8 (GALAMBOS, 1972). Let 0 have the Gauss-Kusmin law. Then

lim P {maXlSiS" . } =e 'V, y>0.
n—o0 n 10g2

Galambos’s result says that the excursions predicted by Borel-Bernstein are rather
rare, as the maximal a; up to time n typically has magnitude ©(n). Of course, the
difference is easily explained by the different natures of strong and weak convergence. Note
that Lemma 8 remains valid if # has the uniform distribution on [0,1]. The important
technical contribution of Galambos is that he has mastered the dependence between the
ay’s. We are faced with the same problem, and cite the fundamental result needed to
make things click.

LEMMA 9 (PHILIPP, 1970). Let 6 have the Gauss-Kusmin distribution. Let M,,, be the
smallest o-algebra with respect to which the coefficients a,, ..., a, are measurable. Then
for any sets A € My, and B € M1y, 0,

[P{AB} — P{A}P{B}| < cp"P{A}P{B},

where p € (0,1) and ¢ is a constant.

This result states that in effect the a,’s are almost independent, with the depen-
dence decreasing in an exponential fashion. One last Lemma concludes the technical
introduction.

LEMMA 10. If P and @) are two probability measures and « > 0 is a number such that
for all rectangular Borel sets (products of intervals), P > «(), then P > a() for all Borel
sets.
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PRrROOF. This result should be standard. Let A be a Borel set. For € > 0, we find N and
rectangles A; and B;, 1 <4,j5 < N, such that

N N
‘Q(A) =) QA)| <€, |P(A) =) P(B)| <ce.
i=1 j=1
Clearly, then,
N
‘Q(A) — ) Q(ANB;)| <e,

1,7=1

and similarly for P. Therefore,

P{A} > P{A;NB;} —¢

Z OZZQ{AlﬂB]} — €
> a(Q(A) ~ )~ ¢
=aQ(A) —e(a+1)

> aQ(A) — 2¢

Let € — 0, and the inequality follows. O

Partial sums of partial quotients.

Here we consider the behavior of partial sums of the partial quotients of a random
Weyl sequence, and obtain a limit law. More precisely, we study the behavior of

n

Sn:Zai

i=1
when 6 is replaced by U, a uniform [0, 1] random variable. The following Lemma relates

bounds for sums of (dependent) partial quotients to bounds for sums of independent
partial quotients.
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LEmMMA 11. Let Xy,...,X, be the first n partial quotients when 0 is Gauss-Kusmin
distributed, and let Y1, ...,Y, be i.i.d. with common distribution that of X;. Define, for
k
Zj:l Y7

e > 0,
_— > .
klog, k 6}

Then there exists ng depending upon € only such that for n > ny,

P{ X _1‘ . } selog(cn) <nlog(1/p)> |

nlog,n — log(1/p) log(en)

-1

p(m) = sup P{

n>k>m

PROOF. Let N be a positive integer and let € > 0 be arbitrary. Let A; denote a generic
Borel set. Then, if a; is replaced by X; to denote the fact that it is a random variable,
and if # has the Gauss-Kusmin law, then by repeated application of Lemma 9, for k > 1,

k
P{N_i[Xn; € Ansl} < (14 ¢p™) 7 [ [ P{Xw; € Anj}

j=1
Let Y7,Y5,... be an i.i.d. sequence with the same distribution as X;. In particular, then,
by Lemma 9,
> Xn; > Y
Pll=="""_ 1> < (1 Nyk=1p )| Z=9=2 " |
{ i log, k €= (tep’) i log, k ‘

LY
— 1 Nyk=1p =170 4
(1+cp™) { Flog, k

< (L+ep™)p(k) -

Note that ¢ is a nonincreasing function. Clearly, assuming that n is a multiple of N to

> 26}
> 26}

Z] 1 Zn/N 1XNz’Jrj
> 26}

avoid messy expressions,

P{ Zz:l -1

nlog, n

{

-1

nlog, n




n/N
— NP X X 1
(n/N)log, n

> 26}

YUY X MY X
= AP { (n/N)logsn  (n/N) logy(n/N)

+ NP { > e}
S Xy

elogn
= { (/) oga(n/N) |~ Tog N }
+ N (1 + cpN)n/N © (%)
< 2N (1 + cpN)n/N © (2)

N
(as soon as elogn/log N > 1+¢) .

$

S X

(0/N) logy (n/N)

Now, assume that NV is chosen such that

log(en) <N < 2log(cn)

log(1/p) ~ log(1/p)
Then
i Xi . 2log(cn) 1\ (nlog(1/p)
P{ nlog,n =2 } §2log(l/p) * <1+n> w( log(cn) >
4elog(cn) (nlog(1/p)
= Tog(1/p) ( log(en) ) |

Recall that this bound is valid under the condition elogn/log N > 1 + €. This in turn is
valid for all n large enough by our choice of N. OJ

GENERALIZATION. Note also that in Lemma 11, the X;’s and Y;’s may be replaced by
g(X;) and ¢(Y;) for any mapping ¢g. In what follows below, we fix n, and define

[0 ifu>n/loglogn
9lu) = {u otherwise,

and apply Lemma 11 to the g(X;)’s. O
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ProPOSITION 12. If 6 is Gauss-Kusmin distributed, then

Z?:l @i

—+1
nlog, n

in probability.

ProoF. By Bonferroni’s inequality, if ¢ is as in the remark above,
P { E;l -1 > 36}
<P {‘M —1| > 26}
nlog, n
+P {Z ij[n/ log log n,n loglog n] (Xz) > €n 1Og2 n}
i=1

nlog, n
+nP{X; > nloglogn}
=I+I11+1IT.

TERM II. If Z is a Gauss-Kusmin random variable,

IT <nP {I/Z > n\/logn} = nlog, <1 +

1

< — 0.
nloglogn> ~ log,logn

TeERM 1. I is bounded as above with a slight change in the definition of ¢:

k
Zj:l 9(Y;) S ¢
klog, k '
Let us compute the mean u and variance o2 of g(Y}).
E { L(I/Z)[l/z<n/loglognJ } <E {(I/Z)II/Z<n/loglogn}

_ /1 L iR

oglogn/n

-1

n>k>m

o(m) ' sup P{

(where F'(z) = logy(1 + 2))

1 /1 1
= —dz
10g2 loglogn/n 2(1 + Z)
< log,(n/loglogn) .
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Similarly,
1+ E { L(l/Z)Il/Z<n/loglognJ} > E {(I/Z)II/Z<n/loglogn}

> / (1/2)dF(2)

oglogn/n

1 /1 1
= —dz
1Og2 loglogn/n Z(l + Z)

2
= logy(n/loglogn) — log, (1 TToglog n/n>

> logy(n/loglogn) — 1.
Therefore,
|1 —logy(n/loglogn)| < 2,

and thus, |p —logyn| < 2+ log,loglogn. Next, to compute an upper bound for the
variance, we argue simply as follows:

o? < Eg*(V1)
< E {(I/Z)QII/Z<n/loglogn}

- /1 L y2are)

oglogn/n

I 1
- ——d:
10g2 loglogn/n z (1 + Z)
n

< —
~ log2loglogn
We are finally ready to apply Chebyshev’s inequality:

Zy 193 —1|>e€
l~clog2
<

S (9(Y)) — )

€ z —logy k) €
P s © €
klog, k 2 k 1og2 K >
40?
>~ W + I(2+logz log log n+logs(n/k))/ logs k>€/2

4dn
= 2
klogs k log 2 €2 loglogn

+ I(2110g, loglog n-+logs (n/k))/ logy k>c/2 -

Thus, in Lemma 11, applied to g(X;)’s, we may take

1 if 2(2 + log, loglogn + logy(n/m)) > elog, m
p(m) = s otherwise.

m log3 m log 2 €2 loglogn

18



Therefore, by Lemma 11,

de log(cn) n log(l/P)
= Tog(1/p) ( log(cn) >

ot O(n)

= O(logn) x (n/logn)log®(n/logn)loglogn
= 0(1/loglogn) ,

which tends to zero. Thus, I — 0 as well.

TERM III. Define B = [n/loglogn,nloglogn]. We bound P{A}, where

def
A=

k
ZXiIXieB > ﬁnlogn] .

i=1
Let N be the number of X;’s in B. Clearly, A C [N > elogn/loglogn|. Note that

e P{X; > n/loglogn}

<P{1/Z > n/loglogn}
= log,(1 + loglogn/n)
< log, logn .
n
By Lemmas 9 and 10, we have
P{N > u} <P{I(i1,...,in) C{1,...,n}: X;, € B,..., X;, € B}
< (1+ep)*P{3(i1,...,0,) C€{1,...,n}: Y, € B,....Y;, € B}
(where the Y;’s are i.i.d. and distributed as the X;’s)

< e (l)Ery, € B)
< (e

- U

< <(1 + ¢p)elog, logn>“

o U
— 0

if we set u = [2(1 + ¢p)elogylogn]. As u = o(elogn/loglogn), we have shown (with

room to spare) that
[I1 =P{A} 0.0

Proposition 12 was proved by analytical methods by Khintchine (1935).

proof given here provides explicit estimates of rates of convergence as well. Proposi-

tion 12 may be rephrased as follows, if A, denotes the collection of all #’s on [0, 1] with
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| >y ai/(nlogyn) — 1] > e
lim P{# € A,} =0 .

n—o0

THEOREM 13. If @ has a distribution with a density on [0, 1], then

Z;L:l a;

—1
nlog, n

in probability.

PROOF. If the Gauss-Kusmin # is replaced by a uniform [0, 1] random variable U, then,
as the density f of # decreases monotonically from 1/log2 to 1/log4 on [0, 1], we have

P{U € A,} = du

An

2
S/ du
a, (1+u)

1
=log4 —d
©8 /An (14 u)log?2 “
=logdP{f € A,}

— 0.

Thus, Proposition 12 remains true for the uniform distribution and for any distribution
with a density on [0,1]. O
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The behavior of the denominator of the convergents.

LEMMA 14 (KHINTCHINE, 1935 AND LEVY, 1936; SEE KHINTCHINE, 1963, P. 75). There
exists a universal constant v = 72/121n2 ~ 1.186569111 such that for almost all 0,

g = 0o

Lemma 14 is related to the property (IKChintchine, 1963, p. 101) that
n 1/n 00 Inj
def 1 In2
H a; — C = H (1 + 7)
(i:l ) i i3 +2)
for almost all #. Indeed, to get this intuition, recall from the recurrences for the ¢,’s that

n+1 = Qpi1Gn + Gno < (an-i-l + I)Qn )
so that

n n
@ <[J+a)<2"[]a; . O
j=1 i=1

We also note that g, must grow faster than a Fibonacci sequence, as ¢,11 >
Gn + Gn_1. This implies that ¢, > p"~! for all n, where p = (14 +/5)/2 is the golden ratio.
Another simple lower bound is ¢, > 2»=1)/2 (Khintchine, 1963, p. 18). Finally, we note
that a normal limit law for (log ¢, — vk)/vk was obtained by Philipp (1969).

THEOREM 15. If @ has any density on [0, 1], then
H, B H, B H, o
(1/v)lognlog,logn  (121n2/72)lognlog,logn  (12/72)lognloglogn

in probability. Note that 12/m* ~ 1.215854203 and 121n2/7* ~ 0.8427659130.
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ProoF. By Theorem 13, as k — oo,

k
Z a; ~ klogy k
i=1

in probability. Next, logqr ~ vk in probability. The latter fact implies that in probability,
k ~ (1/v)logn if k is the unique integer such that g, < n < gx41. But Theorem 13 and
Proposition 5 then imply that

Hy Hy —1
klogy k. (1/v)lognlog,logn

in probability. OJ

This theorem does not describe the behavior as n — oo for a single # (the “strong”
behavior). Rather, it refers to a metric property and takes for each n a cross-section of
0’s that give a height in the desired range, and confirms that the measure (probability)
of these 6’s tends to one. For oscillations and strong behavior, a bit more is required. By
the Borel-Bernstein theorem, with probability one,

a, > nlognloglogn

/

infinitely often. Since with probability one, q,i F e as k — 00, we see from Lemma 5

that with probability one,
H, > (1/v)lognloglognlogloglogn

infinitely often. Thus, Theorem 15 cannot be strengthened to almost sure convergence,
as the oscillations are too wide.

It is of interest to bound the oscillations in the strong behavior as well. Also, again
by the Borel-Bernstein theorem, with probability one, for all but finitely many n,

an < nlognlog'™logn

for € > 0. This implies that with probability one, for all but finitely many n,

n
Z a; < n? lognlog'™logn .
7=1

But then, by Theorem 5 and Lemma 14, with probability one, for all but finitely many n,

2
H, < ? log? nloglognlog'™lognlogn .
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Very good trees. From the inequality of Theorem 2, we recall that H,, = O(logn) if
i a; = O(n). Such irrationals have zero probability. As the most prominent member
with the smallest partial sums of partial quotients, we have the golden ratio (a, = 1 for
n > 0). Indeed, as for these sequences, ¢, < [[i_;(1 +a;) < exp(d>_i, a;) = exp(O(n)),
we have the claimed result on H,, without further ado. In fact, for the golden ratio, we
have g, ~ cp, where p = (1 ++/5)/2 and ¢ > 0 is a constant. As Y7  a; = n, we see

that
logn

logp
The Weyl tree is simply not hight enough compared to typical random Weyl trees, and

H, ~

also with respect to true random binary search trees.

. n
If a,, = a for all n, then ¢, = ag,,_1 + ¢,_» for all n. From this, ¢, ~ ¢ (‘”7 ”2“2“)

for some constant c. As > a; = an, we see that
a

e (2o
log(a+2a+>

logn .

Note that the coefficient can be made as large as desired by picking a large enough.

Very bad trees. We first show that Weyl trees can be almost of arbitrary height.

THEOREM 16. Let h, be a monotone sequence of numbers decreasing from 1 to 0 at
any slow rate. Then there exists an irrational # such that for the Weyl tree, H,, > nh,,
infinitely often.

PrROOF. We exhibit a monotonically increasing sequence a, of partial quotients to de-
scribe 6. The inequality will be satisfied at instants when the tree size n = ¢ for some k.
Thus, we will have for all £ large enough,

H‘]k > qkh% :

Now, for k > 2, H,, > Zle a; —1 > ay, and
k

ar < qp < 2° Hai < %®ap(ap 1)t .
i1
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Thus,

H,, 1
> >h, >h
Qe 2k(ap_y)k-t T T

by choosing ay large enough (note that k and ay_; are fixed). O

A few examples suffice to drive our point home. Take a; = 2*. Then

2k(k+1)/2 S qk S 2]€+k(k+1)/2

Y

so that £ = y/2log,n — K + o(1), where K € [1/2,3/2]. As Zle a; = 281 — 1, we have
at those times when n = ¢ for some £k,

H,=2"'-1=0 (2\/2109;2") .
This grows much faster than any power of the logarithm.

If we set a; = 22", then ¢, < 2% Hle a; < 26271 < log, (ay)a2/2. Combine this
with H,, > aj, and note that when n = ¢, for some £,

> 2n ,
— \/ log, H,

4n
logyn

and therefore,

H, > (1+0(1))

By considering aj, = 0" for integer b, the height increases at least as (n/log, n)! /%,

Trees for a few selected transcendental numbers. The partial quotients are known
for just a few transcendental numbers. For example

tan(1/2) =[0;1,1,4,1,8,1,12,1,16,.. ] .

Thus, ag, = 1, aggrr = 4k, k > 1. From qogy1 = 4kqor + qar—1 and qop = qor—1 + qor—2,
one cam show (see Boyd and Steele, 1978, p. 57) that
4R B! < gopyr < 8F(k 4 1)!
and
A2k+1 = Qort2 = (Ck)k
for some constant c. In fact, then, we see that the k for Theorem 2 satisfies
logn
loglogn
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But then
ks k2 log®n

2~ 21og”logn
The Weyl tree is much higher than that of a typical random Weyl tree.

In a second example, consider
e=1[21,2,1,1,4,1,1,6,1,1,8,.. ]

so that ag = 2, agy = azm—2 = 1 and agp_1 = 2m for m > 1. Then (Lang, 1966, p. 74)
there exist constants C; and Cy such that

This shows that k ~ logn/loglogn. Thus,

logn
n

- 9log?logn
Again, the Weyl tree has an excessive height.

Sorting Weyl sequences

Ellis and Steele (1981) have shown that the first n elements of any Weyl sequence
can be sorted with the aid of O(log(n)) comparisons only, even though these sequences
too are equi-distributed for any irrational b. This shows that such sequences possess a
lot of structure. Of course, the fact that discrete random Weyl sequences and random
Lehmer sequences are imperfect is because they can be “described” very simply by a small
number of bits. The randomness of a sequence has been related by several authors to the
length of the descriptors (see e.g. Martin-Lof (1966), Knuth (1973), Bennett (1979)). For
surveys and discussions on the topic of uniform random variate generation, one could
consult Niederreiter (1977, 1978, 1991) or L’Ecuyer (1989, 1990).

It is well-known that the number of comparisons needed in quicksort is equal to the
sum of the depths of all the nodes in the binary search tree constructed from the data by
ordinary insertion. As this sum is bounded from below by H,,(H,+1)/2 (just by summing
over the path leading to the furthest node), we see that the number of comparisons in
quicksort is infinitely often at least equal to

nhy,(nh, + 1)
2
for any sequence h,, decreasing to zero, and some irrational §. Yet, for i.i.d. data drawn
from the same nonatomic distribution, the expected number of comparisons is asymptotic
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to 2nlogn (Sedgewick, 1977). Therefore, Weyl sequences are not appropriate for gener-
ating test data for sorting algorithms. With a uniform [0, 1] €, the expected number of
comparisons grows as nlogn loglogn. In fact, we have the following.

PROPOSITION 17. Let 6 be uniform [0, 1]. For any constant C', with probability one, the
number of comparisons for quicksort-ing the first n numbers of a random Weyl sequence
exceeds

Cnlognloglognlogloglogn

infinitely often.

Proor. Consider only n = ¢, for some k. Note that the sum of the depths of the nodes
in the Weyl tree is at least g;_; (the number of leaves) times (ay + 1)ax/2 (as each leaf
is the end of a path of a; all-left or all-right edges and these paths are thus disjoint).
But arqr 1 = qx — qk—2 > qx/2 = n/2, because 2¢; o < qr_2 + qr_1 < qx. Therefore, the
number of comparisons in quicksort is at least

n(ar + 1)

—
But by the Borel-Bernstein Theorem,

ay > 4C~vklog kloglogk

infinitely often almost surely, while by Lemma 14, k£ ~ (1/7v)logn almost surely. Com-
bining all this gives the result. OJ
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The number of leaves.

For a random binary search tree, the expected number of leaves is asymptotic to
n/3 (see Mahmoud, 1992). However, for Weyl trees, the behavior of the number of leaves
is much more erratic. We refer to Lemma 3, and note that at time ¢, — 1, the number of
leaves is exactly g _1:
|‘C‘Zk*1| = dk—1 -
Thus, at that instant in the tree construction (the last node to complete a layer), the

proportion of leaves is
k-1 Gk-1

%=1 g
Just to show how this interesting relationship explains the erratic behavior of typical Weyl

trees, consider the recurrence g, = arpqp—1 + gx—2, and observe that

k-1 < i '
dk ak
The behavior of a; was discussed in an earlier section. It suffices to note that a; > klogk
infinitely often with probability one, so that, with probability one, the proportion of leaves

is infinitely often less than 1/logn, for example.
The fill-up level.

The fill-up level F;, of a search tree is the maximal number of full levels. For a
random binary search tree, this is known to be asymptotic to 0.3711...logn in probability
(Devroye, 1986). Again, random Weyl trees deviate from this substantially. While we will
not study F;, in detail, we would like to note one inequality:

Fr
Hai <dqp, <N .
i=1
Indeed, to get a path in the tree of polarity + —+ —+ —... of length k, by the way layers

are painted on, we must have n > ¢;. But ¢, > Hle a;, which proves the inequality.

ExaMpLE 1. By Lemma 14, we have without further work
F, < (1/y+o(1)) logn

in probability when @ is uniform [0, 1]. In fact, then, we have for all € > 0,

H,
lim P {F > (1-— e)logQIOgn} =0.

n—o0 n
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ExampPLE 2. If a, =k, then F,! < n, so that

F,=0 _logn .
loglogn

This result applies also when 6 = tan(1/2), and 6 = e, two examples cited earlier.

EXAMPLE 3. When q; = 2*, simple calculations show that

F, = 0(y/logn) .

In fact, for any slowly increasing sequence b, it is possible to find a 6 such that F, < b,
for all n large enough.

Other characteristics.

Let the left height of a tree be the maximal number of left edges seen on any path
from a node to the root. Let the right height be defined similarly. Clearly, the left height
is one less than the number of layers of left polarity, and this grows as ZZ % a9; where k
is the solution of n = q;. Using arguments as in Theorem 15, it is easy to prove that if
HE and HI are the left and right heights of 7, then

HE . 6
lognloglogn — w2

and
HE R 6
lognloglogn — w2
in probability.

The distance from the root to the minimum is equal to HZ, and is thus also
covered by the result above. In random binary search trees, these quantities are O(logn)
in probability: the left height grows as elogn, while the distance from the minimum to
the root grows as logn in probability (Devroye, 1987).
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