
Hashing
Rayane Laabid, Lauren Zhou

February 25, 2025

This is an augmented transcript of a lecture given by Luc Devroye
on the 25th of February 2025 for the Honours Algorithms and Data
Structures class (COMP 252, McGill University). The subject covered
was hashing.

Hashing

Hashing is a technique which allows us to store a piece of data, x, in
a table T. The main goal is to optimize the time it takes to retrieve
that data, ideally achieving a time complexity of O(1). To facilitate
this, we employ a hashing function h(·) that maps the key related to
our data, denoted by key[x], to an index in the table.

Definition 1. A hashing function, h(·): K → M, is a map from a
universe of keys, K, to a set of indices M = {0, 1, . . . , m− 1}.

Example 2. Consider a hash function h(·) that maps a phone number
to its last two digits, e.g.,

h(562 562 363) = 63.

The associated index set M is given by {0, 1, 2, . . . , 99}.

Hashing has applications such as:

• ADT Dictionary: search, insert, and delete functions.

• Sorting algorithms: Radix sort, bucket sort (we will cover both).

• Rabin–Karp string matching.

• File signatures, i.e., associating h(x) with a file x.

We implement hashing in dictionary data structures using the follow-
ing techniques:

1. Direct addressing.

2. Hashing with chaining.

3. Open addressing.

If we consider that h(·) can be computed in one-time unit, then the
objective is to ensure that all standard dictionary operations can be
carried out in O(1) time, making it a formidable competition for
search trees.

hashing 2

Direct addressing

Consider a set of data X such that all keys key[x] take values in M =

{1, ..., m}. Let T be a table, implemented as an array, of capacity m. A
direct address hashing function is the identity function

h(key[x]) = key[x].

We store x, considered as a pointer to a cell, in the table T at the
position given by key[x], i.e., T[key[x]] = x (see Figure 1).

T

1

2

...
...

m

key[x]

cell x

key[x]

Figure 1: Example of direct addressing

Insert, delete, and search

Using direct addressing, we can implement the following natural
algorithms for table management:

insert(x, T) :

1 T[key[x]] = x

delete(x, T):

1 T[key[x]] = nil

search(k, T):

1 if T[k] = = nil then
2 return NotFound
3 else
4 return T[k]

Potential issues

Given n number of data points, a potential issue with implementing
a hash table this way comes up when n ≪ m. In this case, we would
waste memory, since many slots would remain unused. In addition,
initializing such a large table would take Θ(m) time, as each slot
would need to be set to nil.

Assume next that we do not initialize the table T, taking it ”as is”.
Then, we use a second table, T∗, along with a stack, S, where |T∗| =
|T|. Each position in the stack is indexed from 1 to Last[S], and T∗[k]
points to a spot in the stack, say i. If S[i] = k, and i ≤ Last[S],
then we are sure that the key at position k in T is legitimate. With
the use of forward and backward pointers, we can easily identify
"garbage" values, avoiding unnecessary initialization and clean-up.
All operations are in O(1) in the ram model.

hashing 3

Insert, delete, and search with shadow table

Insert(x):

1 last[S] = last[S] + 1 // new element to add to the stack
2 k = key[x]
3 T[k] = x
4 T∗[k] = last[S]
5 // shadow table at index k points at the last element of the stack
6 S[last[S]] = k // last element of stack points to key

....
....

....

....
....

T T∗ S

1

2

1

2

1

2

k kx Last(S)

k Last(S)

m m

Figure 2: Example of the tables after
insert operation

Delete(x):

1 k = key[x]
2 T[k] = nil

3 p = T∗[k] // the index where k is placed in the stack
4 q = S[last[S]] // we switch places with the key at the last key in the stack
5 last[S] = last[S]− 1
6 if q ̸= k then
7 T∗[q] = p
8 S[p] = q

....
....

....
....

T T∗ S

1

2

1

q

1

k

k

x

Last(S)

Last(S)

m m

p

....

....
....

k p

q

Figure 3: Example of the state of the
table before the delete operation.

Search(k) :

1 // Search for key k
2 if S[T∗[k]] == k and T∗[k] ≤ last[S] then
3 return T[k]
4 else
5 return NotFound

Hashing with chaining

In direct hashing, we assumed that all of our keys are unique. In
particular, we assumed that the hashing map h never mapped two
distinct keys to the same integer i. What if this were not the case?

Definition 3. For a hashing function h: K → M, a collision between
keys k1 and k2 occurs when h(k1) = h(k2). We say that h has colli-
sions if there exists such a pair k1, k2 ∈ K.

A well-established approach to handling collisions in a hash table is
to utilize linked lists. In this method, rather than each entry in the ta-
ble T of size m storing direct pointers to data, each entry T[k] instead
stores a pointer to the head of a linked list. Each element x within the
linked list at T[k] has a key that hashes to k, meaning h(key[x]) = k.
Consequently, the hash table effectively maintains separate chains
of elements within linked lists at each index, ensuring that multiple

hashing 4

elements mapping to the same hash value can be efficiently stored
and retrieved.

T

Cell

1 2 key[x] N − 1 Figure 4: Example of a table for a
dictionary

Insert, delete, search operations

Insert(x, T) :

1 k = h(key[x])
2 LinkedListInsert(x, T[k])

delete(x, T) :

1 k = h(key[x])
2 LinkedListDelete(x, T[k])

Search(x, T) :

1 k = h(key[x])
2 if T[k] ̸= nil then
3 return LinkedListSearch(x, T[k])

Analysis

Let our table T be of size |T| = m and assume we have n data points
stored in the table, and assume furthermore that they are indepen-
dent and uniformly distributed over T.

Let ES the average size of a linked list:

ES =
n
m

= α.

We call α = n
m the load factor. Let TU denote the expected time of an

unsuccessful search. Thus

TU = 1 + ES = 1 +
n
m

= 1 + α.

where +1 comes from accessing the table at the specific hashed key
index.

hashing 5

Finally let TS be the space used (n data points + m headers) per data
element:

TS =
n + m

n
= 1 +

m
n

= 1 +
1
α

.

0 2 4 6 8 10
0

2

4

6

8

10

α

TU
TS

Figure 5: The intersection represents the
desired sweet spot for the load factor.

Figure 5 shows a trade-off between TS and TU where the optimal
speed/performance balance is reached when α ≈ 1. In general, it is
wise to keep α near 1.

Discussion of result

If we keep α fixed, then the expected time of insert , search or delete
operations is O(1). This makes hashing an excellent data structure
for memory storage and quick access to data.

Exercise 4. Show that the expected time to search for one of the n
data elements is 1+ α

2 − 1
2n , assuming that all n data items are equally

likely to be searched for.

Open addressing

This method does not require any linked lists but it does require that
the number of elements n less than or equal to the size of the table
|T| = m. The idea behind open addressing is to store a key in the first
available slot. We start by checking if T[k] is empty and, if not, we
generate some new index every time we find a full slot until we find
an empty one. Note that the location of a key in the table is affected
by the order in which the keys were inserted. To consider examples
of hashing functions, we must first define the concept of a probe
sequence.

Definition 5. A probe sequence is a sequence of hashed values
of the same key k = key[x] denoted h(0, k), h(1, k), . . . , h(m − 1, k)
that corresponds to a permutation for the slots in Table T, namely a
permutation of the set {0, 1, 2, . . . , m− 1}.

....
....

....

T

0

m− 1

h(3, k)

h(1, k)

h(0, k)

h(m− 2, k)

Figure 6: Probe sequence, illustrated.

The idea would be to go through this permutation and assign
T[h(i, k)] = x for the first empty slot found.

hashing 6

Operations

Insert(x, T) :

1 k = key[x]
2 set j = 0 // jump counter
3 while j < m and T[h(j, k)] ̸= nil :
4 j = j + 1
5 if j == m then
6 return ′Table_Full′

7 else
8 T[h(j, k)]← x

Search(k, T) :

1 // returns the position in the table if found
2 set j = 0
3 while j < m and T[h(j, k)] ̸= nil and key[T[h(j, k)]] ̸= k
4 j = j + 1
5 if j == m then
6 return ′Not_Found′

7 else if T[h(j, k)] = nil then
8 return ′Not_Found′

9 else
10 return T[h(j, k)] // points to a cell

Examples of hash functions

Linear probing
Linear probing uses the probe sequence generated by:

h(k, j) =

(
h(k) + j

)
mod(m).

or

h(k, j) =

(
h(k) + cj

)
mod(m),

where h is a given hash function and c ≥ 1 is an integer with
gcd(c, m) = 1. Often, c = 1.

Remark:
Linear probing, while easy to implement, has a flaw in it known as
primary clustering. Clustering begins to reveal itself as the slots in
the table T fill up, thus negatively affecting the search and insert
times.

hashing 7

Random probing
Random probing uses the probe sequence generated by:

h(k, j) =

(
h(k) + dj

)
mod(m).

where (d0, ..., dm−1) is a permutation of {0, 1, . . . , m− 1} that is close
to a truly random uniform permutation. An example is the linear
congruential sequence: d0 = 0 and di+1 = a · di + 1 mod(m), where
a is an integer. It is well-known that d0, d1, . . . , dm−1 is a permutation
of {0, 1, ..., m − 1} if and only if a − 1 is a multiple of every prime
that divides m where ”4” is considered a prime. For example, if
m = 100 = 52 · 4 then a − 1 must be a multiple of 20. Thus the
possible values for a are {1, 21, 41, 61, 81}.

Double probing
Let h∗ and h∗∗ be two hash functions, and assume that m is prime.
Then, one can use the probe sequence

h(i, k) =
(

h∗(k) + ih∗∗(k)
)

mod(m), 0 ≤ i ≤ m− 1.

Analysis and speed comparison with chaining method

Consider a table of m elements storing n data points using an open
addressing method. Assume that our resulting probe sequence
h(0, k), h(1, k), . . . , h(m − 1, k) are i.i.d., i.e., independent and iden-
tically distributed for each key k = key[x]. Let us examine the op-
eration Insert in order to compare it with the chaining method. We
have

∅

occupied

occupied

0

n− 1

(n occupied cells)

1st try

2nd try

3rd try

Figure 7: Example

P[Finding an empty space in 1st attempt] =
m− n

m
= 1− α.

and thus,

P[Need at least one attempt] = 1− (1− α) = α.

Defining
P[Oi] = P[Need at least i attempts],

We have

P[Oi] =
(n

m

)
·
(

n− 1
m− 1

)
·
(

n− 2
m− 2

)
. . .

(
n− i + 1
m− i + 1

)
≤

(n
m

)i
= αi.

The expected number of attempts for an unsuccessful search is

n

∑
i=1

P[Oi] ≤ α1 + α2 + · · ·+ αn ≤
∞

∑
i=1

αi =
1

1− α
.

hashing 8

This is worse than chaining (since 1 + α ≤ 1
1−α) but can get close

when α is small enough, say less than 0.5. If we maintain that then
just like chaining, we would have a good and efficient data structure
able to compete with binary search trees.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

α

Ex
pe

ct
ed

nu
m

be
r

of
at

te
m

ps

Chaining
Open addressing

Figure 8: The open addressing graph
will asymptotically approach infinity as
α→ 1, unlike the chaining graph.

Dynamic hashing, rehashing

In open addressing and hashing with chaining, the load factor plays
an important role in the access time of the operation (insert, delete,
search), thus keeping it near a target value is essential for the effi-
ciency of the data structure. Before performing an operation such
as insert or delete, one can monitor the load factor. If α is no longer
within a given range (e.g., [a, b]), we re-hash, which involves creat-
ing a new table of an appropriate size to bring the load factor α back
within range. We then transfer all keys from the old table to the new
one.

1

2

1
2

t = time

α

costly”rehash”

Figure 9: Load factor as a function of
time with dynamic hashing.

Example 6. Let us try to keep α ∈ (1
2 , 2). If α goes below or reaches

1
2 , then make a new table T′ of size m

2 and rehash all elements to T′

using a new hash function. When α reaches 2, we create a table T′

of size 2m and proceed the same way. This method ensures that α

remains in [1
2 , 2].

Analysis of the time complexity

In figure 10, tk represents the time at which rehashing occurs, and ∆k

denotes the time elapsed between two consecutive rehashing events,
specifically between tk−1 and tk. Assume that the table contains n
data items at time tk−1. We continue the setting of example 5.

tk−1 tk

∆k
n

Figure 10: Example of time elapsed
between two rehashing instances.

t1 t2 t3

.....

tk
T0

time

∆1 ∆2 ∆3

rehash rehash rehash rehash

We know that the cost of rehashing at moment tk is at most ≤ to 2n
since at the rehashing stage we can at most double the size of the
table T.

We also know that between two rehashing instances we need to at
least access the table n

2 times. Thus we can conclude that ∆k ≥ n
2 .

Thus, the cost of rehashing at time tk is at most 2n ≤ 4∆k.

The total cost of rehashing between zero and T is:

∑
k

cost of rehashing at tk ≤ 4 ∑
k

∆k = 4T.

hashing 9

We conclude from our analysis that the total cost of rehashing be-
tween the first and last rehashing instance is always ≤ four times the
total time elapsed between the first and last rehashing instances. In
other words, it is linear in the number of operations.

Radix sort

Radix sort is a sorting algorithm that implements hashing with chain-
ing. Let us illustrate the algorithm through an example.

Consider the following list of numbers consisting of three decimal
digits:

320, 219, 118, 380, 220, 109, 707, 415, 655, 315.

We construct a table with |M| = 10 buckets, where each bucket
contains a linked list. As a result, the table consists of a total of ten
linked lists. We then proceed by applying the following hash func-
tion:

h(x) = x mod(10).

We insert each number into its corresponding bucket. This results in
the following table:

0 1 2 3 4 5 6 7 8 9

320 415 707 118 219

380 655 109

220 315

We then reorganize the array by emptying the buckets from left to
right:

320, 380, 220, 415, 655, 315, 707, 118, 219, 109.

Next, we apply the process again with a new hash function, the sec-
ond digit from the right, preserving the order in which the elements
were stored as we move from left to right and top to bottom across
the table:

h(x) = (x div 10) mod(10).

Example:

h(320) = (320 div 10) mod(10) = 32 mod(10) = 2.

We then store these values in the same table:

hashing 10

0 1 2 3 4 5 6 7 8 9

707 415 320 655 380

109 315 220

118

219

We regroup the array again by the same method:

707, 109, 415, 315, 118, 219, 320, 220, 655, 380.

and for the last time use the following hash function and store the
result into the table:

h(x) = (x div 102) mod(10).

We thus obtain:

0 1 2 3 4 5 6 7 8 9

109 219 315 415 655 707

118 220 320

380

By regrouping one last time we obtain our sorted list.

109, 118, 219, 220, 315, 320, 380, 415, 655, 707.

Note that this procedure runs in time equal to n times the num-
ber of rounds, which in this case is the number of digits in the
numbers. Consider the case where we take n numbers from the
set {1, 2, . . . , n20}. The worst-case number of rounds in this sce-
nario would be log10(n

20) = 20 · log10(n). A good alternative
would be to change the base from 10 to n and rewrite any number
in {1, 2, . . . , n20} in the form of x = x0 + x1 · n + · · ·+ x20 · n20. We
then obtain a hash table with n buckets of linked lists and it only
takes 20 rounds to sort the list.

Bucket sort

Consider a monotone hashing function h(·) such that x ≤ y implies
h(x) ≤ h(y). Then assign each element to its corresponding bucket in
the table T for hashing with chaining, and finally sort each linked list
in all the linked lists (also called buckets) and regroup.

Example 7. Assemble the following array of size 10:

[0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21, 0.12, 0.23, 0.68]

with the following hash function :

h(x) = ⌊10 · x⌋.

hashing 11

Finally consider a hash table T with size 10 then we can assign each
value to its corresponding bucket:

0 1 2 3 4 5 6 7 8 9

0.17 0.26 0.39 0.68 0.78 0.94

0.12 0.21 0.72

0.23

Sorting each linked list in each bucket we thus obtain:

0 1 2 3 4 5 6 7 8 9

0.12 0.21 0.39 0.68 0.72 0.94

0.17 0.23 0.78

0.26

We finally end by regrouping each linked List from each bucket from
left to right to form our final solution:

[0.12, 0.17, 0.21, 0.23, 0.26, 0.39, 0.68, 0.72, 0.78, 0.94].

Property
One of the interesting properties of bucket sorting is the following. If
the hash function h distributes the points randomly and uniformly,
then:

E[Time] = O(n) i f n = m.

Bloom Filters

Context and goal: Given a data structure Dn holding n items la-
beled (x1, ..., xn) that all live in a space X, the goal is to quickly check
whether a new x ∈ X is not in Dn.

Definition 8. Consider the following defined design parameters:

• ε > 0: An upper bound on the probability of making a false posi-
tive error, i.e., declaring x ∈ Dn when it is not.

• k: The number of hash functions. The hash functions are denoted
as h1, ..., hk, mapping X → {1, ..., N}.

• N: The size of the Bloom filter, measured as a number of bits.

Array B[i, j]

hash f unction
number

1 ≤ i ≤ k

table index
1 ≤ j ≤ N

Figure 11: For the Bloom filter, we
maintain a k × n matrix B contain-
ing bits. B[i, j] refers to the i-th hash
function and j-th data entry.

1

...
k

0 0 1 0 1 1 1 0 0 0 0 0 1 0

1 0 1 1 1 0 0 0 0 0 1 0 1 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1

1 2 . . . N

hashing 12

Operations

Consider the following operations defined for Bloom filters:

• Makenull (initialize):

makenull(B):

1 for i = 1 to k
2 for j = 1 to N
3 B[i, j]← 0

• Add x to B:

add(x, B):

1 for i = 1 to k
2 B[i, hi(x)]← 1

• Check if x is in Dn: We have the following cases, if

k

∏
i=1

B[i, hi(x)] =

0 then declare "x /∈ Dn" (this is always correct).

1 then declare "x ∈ Dn" (there could be some false positives).

Probability of a false positive

We assume that all values hi(xj), 1 ≤ i ≤ k, 1 ≤ j ≤ n, are
independent and uniformly distributed on {1, ..., N}.

If x is a new item not in Dn, then the probability of getting a false
positive is:

P{false positive} = P
{ k⋂

i=1

B[i, hi(x)] = 1]
}

=

(
1−

(
1− 1

N

)n)k

.

Let us now pick k = ⌈log2
1
ε ⌉, and N = ⌈ n

ln 2⌉. Then

P{false positive} ≤
(

1−
(

1− ln 2
n

)n)k
n→∞−→ 1

2k ≤
1

2log2
1
ε

= ε.

Example and uses

Example 9. Consider the example with ε = 1
128 = 1

27 , so k = 7, and
m = k× N ≤ 7

ln 2 (n + 1) which is around 10n bits. The expected time
complexity for searching with and without Bloom filters for each
operation can be summarized as follows, where f (n) depends upon
the data structure Dn.

hashing 13

Operation Without Bloom filter With Bloom filter
Search for x in Dn when x ∈ Dn f (n) k + f (n)
Search for x in Dn when x ̸∈ Dn f (n) k + ε f (n)

When ε is small, one can considerably reduce the expected time com-
plexity for searching. In addition, only O(n) bits of extra storage are
required.

For large Dn, many applications used Bloom filters to improve per-
formance. For example, in Google Chrome (to identify malicious
URLs), in Bing’s bit funnel search index, in Bitcoin (for wallet syn-
chronization - now discontinued), in Ethereum (to quickly find logs
on the Ethereum blackchain), in database software like BigTable,
Apache HBase, Apache Cassandra, ScyllaDB and PostgreSQL, (to
reduce disk look-ups for non-existence of rows or columns) and in
Akamai (to prevent one-hit wonders, request by users just once, and
cache web objects only upon second request).

Exercises

Exercise 10. If k = 1, how large should m = N be to have an error
probability of at most ε?

Exercise 11. If the table size (m = k× N) is restricted to be at most n
for technical reasons, then show that no matter how k is picked, the
probability of error is at least 1− 1

e + O(1).

References

B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, vol.13(7):p422–426, 1970.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge, MA, 2009.

Aram-Alexandre Pooladian and Alexander Iannantuono. A lecture
on hashing, 2017. URL https://luc.devroye.org/AramPooladian+

AlexIannantuono-HashingLectureNotes-McGillUniversity-2017.

pdf.

Wikipedia. Bloom filters. URL https://en.wikipedia.org/wiki/

Bloom_filter.

https://luc.devroye.org/AramPooladian+AlexIannantuono-HashingLectureNotes-McGillUniversity-2017.pdf
https://luc.devroye.org/AramPooladian+AlexIannantuono-HashingLectureNotes-McGillUniversity-2017.pdf
https://luc.devroye.org/AramPooladian+AlexIannantuono-HashingLectureNotes-McGillUniversity-2017.pdf
https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Bloom_filter

	Hashing
	Direct addressing
	Hashing with chaining
	Open addressing
	Dynamic hashing, rehashing
	Radix sort
	Bucket sort
	Bloom Filters

