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Abstract

Let f be an unknown multivariate density belonging to a prespecified
parametric class of densities, Fy, where k is unknown, but Fj, C Fg11
for all k£ and each Fj, has finite Vapnik-Chervonenkis dimension. Given
an 4.7.d. sample of size n drawn from f, we show that it is possible to
select automatically, and without extra restrictions on f, an estimate
[, with the property that E{[ |fog — fI} = 0O(1/4/n). Our method
is inspired by the combinatorial tools developed in Devroye and Lugosi
[16] and it includes a wide range of density models, such as mixture
models or exponential families.

Index Terms — Multivariate density estimation, Vapnik-Chervonenkis
dimension, mixture densities, penalization.
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1 Introduction

We consider the general problem of estimating a density f on R? that belongs
to a prespecified parametric class of densities, Fj, where k is unknown, but
Fr C Fyyq for all k. Define

F=\]F.

In the union above, Fj, denotes, for each fixed £ > 1, a given class of densities,
parameterized by one or more parameters, and considered from a topological
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point of view as a closed metric subspace of the space of all densities on R?
endowed with the L; metric. Note that the requirement that F; is closed
for the L; metric is not restrictive, since any metric subspace of L; can be
extended into a closed one by the principle of extension by continuity (Dun-
ford and Schwartz [19]). For example, F; might be the class of all mixtures
of k Gaussians on R¢, see below. Given a random sample X1, ..., X,, drawn
from f, this article proposes a general methodology to pick automatically,
and without extra restrictions on f, a density estimate f, ; in F with the

property that
B{ [1fi- 11} =0()

The estimate fn’;c will be selected by a penalized combinatorial criterion,
inspired by the combinatorial tools developed in Devroye and Lugosi [16].
Before we present our method, we illustrate the generality of the approach
by working out examples for two important parametric classes.

Example 1: Mixture classes. Consider first the classes Fj, of all mixtures
of k normal densities over R?, that is, the classes of all densities of form

k
N Di —Lz—m)TS; Y z—m;)

x) = e 2 i ,
/(@) Z(?W)d/Q det(T;)

=1

where (p1, ..., pg) is a probability vector, ¥y, ..., ¥ are positive definite dx d
matrices, and my, . .., my, are arbitrary elements of R¢. An enormous body of
literature exists regarding the application, computational issues and theoret-
ical aspects of mixture models when the number of components is known, but
estimating the unknown number of components remains an area of intense
research. The scope of application is vast, as mixture models are routinely
employed across the entire diverse application range of statistics, includ-
ing nearly all of the social and experimental sciences. For early references,
see Everitt and Hand [20], Titterington, Smith and Makov [43], McLach-
lan and Basford [34], and McLachlan and Peel [35]. The commonly used
method for estimating the parameters of a mixture is the EM (expectation-
maximization) algorithm (see Redner and Walker [37]). While originally
designed for fixed mixture classes, such as mixtures of £ Gaussians, the prob-
lem of the unknown £ has received some attention in the Bayesian literature
(Diebolt and Robert [17], Richardson and Green [38], Roeder and Wasser-
man [39], Celeux, Hurn and Robert [9], and Hurn, Justel and Robert [26]).
The statistical learning community has also looked in depth at the problem
(Bishop [6], Jordan and Jacobs [28], Zeevi and Meir [49], Figueiredo and Jain



[21]). In clustering, or unsupervised learning, one often makes an assumption
about the number of clusters and the distribution within each cluster. Esti-
mating the distributions in the clusters and the weights of the clusters then
leads to a natural way of clustering. Likelihood ratios have been used for
this in most works, from Hartigan [25] to Fukumizu [23]. Dacunha-Castelle
and Gassiat [10], [11], [12] on the other hand use the moment method for
identification and estimation of the number of components. The most recent
attempts at estimating the mixture density parameters and the number of
mixture densities jointly are by Priebe [36], James, Priebe and Marchette
[27], and Rogers, Marchette and Priebe [40].

Example 2: Increasing exponential families. Each density f in an
exponential family Fj may be written in the form

/() = coB) Bla)eZin ™),

where 6 belongs to some parameter set ©, ©1,...,¢, : R? - R, 8 : R —
[0,00), a,71,...,m : © — R are fixed functions, and ¢ is a normaliza-
tion constant. Examples of exponential families include classes of Gaussian,
gamma, beta, Rayleigh, and Maxwell densities. By allowing k£ to grow, this
model can become very rich and powerful. In fact, by taking the more clas-
sical statistical view, and concentrating on identification of the parameters,
one is doomed to run into problems of identifiability and unstable or non-
converging estimation algorithms. Rather than focusing on the parameters,
we will look directly at the performance of the estimate without worrying
about the consistency in the space of all unknown parameters.

The paper is organized as follows. In section 2, we present our estimation
procedure as well as some useful related tools. The main result, Li-optimality
of f, 1, is stated in section 3. The proofs are gathered in section 4.

2 The penalized combinatorial method

Using ideas from Yatracos [48], Devroye and Lugosi explore in [16] a new
paradigm for the data-based or automatic selection of the free parameters
of density estimates in general, so that the expected error is within a given
constant multiple of the best possible error. To summarize in the present
context, fix k > 1, and define a density estimate f,  in Fj as follows. First
introduce the class of sets

Av={{z: f(z) > g(2)} : f, 9 € Fi}
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(A is the so-called Yatracos class associated with Fi) and the goodness
criterion for a density g € Fi:
/ 9 — pn(A)
A

where pin,(A) = (1/n) >°"; Lix,ca is the empirical measure associated with
the sample X1,..., X,. For each k > 1, the minimum distance estimate fy
is defined as any density estimate selected from among those densities f € Fy
with

Ar(g) = Sup
k

b

A(f) < inf Au(g) 4+

9€F

Note that the 1/n term here is added to ensure the existence of such a density
estimate. For each minimum distance estimate f, , we have (Devroye and
Lugosi [16], Theorem 6.4)

[1t=s1<s it [1r-gl+ 1)+ (2.1)

The uniform convergence of empirical measures as developed by Vapnik and
Chervonenkis [44] can now be applied to density estimation via the term
Ag(f). To this aim, we let Vj be the Vapnik-Chervonenkis dimension of the
class of sets Ay (Vapnik and Chervonenkis [44]). Recall that Vy is defined as
the largest integer p such that

Sy, (p) = 2"
where S 4, (p) is the Vapnik-Chervonenkis shatter coefficient, defined by

Sa.(p) = max  Card{{zy,...,z,} NA: A€ A}.

$1,...,$p€Rd

If S4,(p) = 27 for all p, then we say that V = oco. A standard inequality
from empirical process theory (Dudley [18]) shows that if 4; has Vapnik-
Chervonenkis dimension bounded by Vj, then

E{A(f)} < c\/% : (2.2)

where C' is a universal positive constant. Using the original result of Dudley
[18], the value of the constant C' is found to be around 65. However, this
value can undoubtedly be sharpened.



A simple consequence of the well-known bounded difference inequality (Mc-
Diarmid [33]) tells us that

P{ |Ak(f) ~ E{AK(N)}] >t} < 2e7 (2.3)

for any n > 1 and ¢t > 0. This shows that for any class A, the maximal
deviation is sharply concentrated around its mean. Combining (2.2) and
(2.3) leads to the following useful inequality:

P {Ak(f) > % +C ‘T/l’“} < 2e72 (2.4)

Inequalities (2.1) and (2.2) then imply

Vie 3
E{ [ - f|} <3inf [I7 -4 +40\/%+ S (@9

We introduce the index of the economical representation of f as
ko =min{k > 1: f € F}.

Naturally, as it is assumed that f € F, one has ky < co. Thus ky represents
the index of the most parsimonious model for f. Since f € Fy,, inequality

(2.5) reduces to
{/\fnk—f\} <40\/?’“ 2 (2.6)

as soon as k > ko. As k typically grows with n—it is a parameter of our
choice—, we see that the rate of convergence guaranteed by (2.6) is not quite
O(1/4/n). Indeed, if V; — oo as k — oo, then we cannot conclude that a
square root n rate is obtained. If we do not let k£ tend to oo, then we have
no guarantees that k£ > kg, and we cannot even conclude consistency. Since
the class F, the infinite union, is too “rich” to be dealt with directly by the
original combinatorial method, as its Vapnik-Chervonenkis dimension is typ-
ically infinite, we cannot apply the original combinatorial method to it. It is
to correct this situation that we present the penalized combinatorial method.

We define a penalized minimum distance estimate f, ; as any estimate se-
lected among the family of minimum distance estimates f,;, & > 1, with

/fnk: fn( )‘—l—pen (k)} (2.7)

ke argmink>1{ sup
- A€EA;
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where pen,, (k) is a penalty function to be specified later but tending to infin-
ity with k. This, together with the fact that the right-hand term of (2.7) is at
most 1 + pen,, (1), shows that we need only do the computations for those &
for which pen, (k) < 14 pen, (1)-and there are a finite number of such terms.

The idea of minimizing the sum of an empirical term and a term penalizing
the complexity has been investigated in various statistical problems. It was
first introduced by Vapnik and Chervonenkis [47] and Vapnik [44] in pattern
recognition as structural risk minimization. It was applied to regression es-
timation as complexity regularization principle in Barron [1] and was further
investigated by Barron, Birgé and Massart [2], Krzyzak and Linder [30], and
Kohler [29]. For further references, we refer the reader to Devroye, Gyorfi
and Lugosi [15], Chapter 18, and Gydrfi, Kohler, Krzyzak and Walk [24],
Chapter 12.

We will not be concerned with the actual details of the minimization algo-
rithm. We realize however that more work is needed to make the present
method computationally feasible (see the discussion at the end of section 3).

3 Results

Here and below, B denotes the class of all Borel sets of R¢. Recall that a
class A of subsets of B is a w-system if it is closed under the formation of fi-
nite intersections: A, B € A implies ANB € A. See Billingsley [5] for details.

Our result is as follows:

Theorem 3.1 Let (Ag)k>1 be the sequence of Yatracos classes associated
with the models (Fi)x>1. For each k > 1, assume that the Vapnik-Chervonenkis
dimension Vy of Ay is finite and let Vi, be a real number satisfying Vi < Vj.
Consider some universal constant M and some family of nonnegative weights
(@k)k>1 such that
Ze‘”i <M. (3.1)
k>1
Then, provided A, contains a m-system that generates B, the penalized min-
imum distance estimate fn,;c defined with

pen (k)_M
Y/



satisfies, for all n large enough,

D 2 6, 2/3
E V< D ame
{/‘fn,k f|}_\/ﬁ+n+ € )

2

where

D:4(xk0+C’ Vk0+

and
ko =min{k > 1: f € F}.

The requirement that A;-and thus each Aj—contains a 7w-system generating
the Borel sets B is essentially of technical nature and in no way restrictive.
Observe for example that it is satisfied for d = 1 as soon as the Yatracos
class contains the w-system of all intervals, and more generally for d > 1
the 7m-system of all d-dimensional rectangles. The penalty function depends
on the weights (zj),>1 satisfying (3.1). A reasonable way of choosing those
weights is to make them depend on k£ only through the majorizing sequence
(Vi)k>1. One could be for instance interested in the choice zy = /Vj. In this
case, condition (3.1) reads

Y e <M. (3.2)

E>1

As an illustration, consider the examples of section 1. It can be shown (see
Devroye and Lugosi [16], Chapter 8) that V, = O(k*) for the univariate
Gaussian mixtures with £ components, and V;, < k + 1 for the exponential
families. Inequality (3.2) is thus satisfied by a large collections of models.

It is strictly speaking not necessary that V, — oo, although such situations
are of little general interest. Indeed, if sup,-; Vx < oo, then the Vapnik-
Chervonenkis dimension of F is finite, and one could just apply the ordinary
combinatorial method. The idea of using the additional x’s in the definition
of the penalty is due to Barron, Birgé and Massart [2], who study perfor-
mance bounds for model selection based on an empirical loss or contrast
function with an added penalty term motivated by empirical process theory,
and roughly proportional to the number of parameters needed to describe
the model divided by the number of observations. See also Castellan [8] and
Massart [32].

Summarizing, we have thus shown, assuming that f € F, how to pick a
mixture complexity and a density from the given mixture, and still guarantee
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an O(1/4/n) rate of convergence for the expected error, just as if we had been
given the mixture complexity beforehand. The constant D in the bound of
Theorem 3.1 can undoubtedly be improved a bit. On the other hand, we
realize that an important situation occurs when f is not assumed to be in
one of the models F;. The penalized combinatorial method may be applied
in this case, but one needs to carefully assess the expected L; error of the
resulting density estimate as a function of a quantity like

. . Vi
inf {;é%/‘f‘g‘ +\/F} -

We will deal with this problem elsewhere. The challenge here will be to make
off the trade-off between the bias resulting from using a small model and the
variance term. In the present paper the bias is assumed away, the variance
dominates, and we obtain the fast convergence rate 1/y/n. The papers of
Stone [42] and Barron and Sheu [3] on approximation of density functions by
sequences of log-splines and exponential families, respectively, should provide
good starting points.

The present paper, by virtue of its universality, is intended to describe a basis
for future work in this area. Indeed, several questions need to be addressed,
including that of the data-based choice of (z)k>1 (which will necessarily in-
volve an optimization with respect to the second term in the error rates).
Equally important is the computationally efficient selection of the minimum
distance estimate. It is important to realize that the number of classes Fy
that need to be considered, if z;, = \/V}, is conservatively bounded by the
largest & for which (C' + 1)/Vi < (C + 1)V/Vi + v/n (as pointed out in the
text). In fact, as the argument in (2.7) evolves with k£ as a global minimum
m (at ko, most likely) plus a term that grows roughly as \/V,/\/n, we see
that one can stop when /V; > m+/n, which in view of m = O(1/y/n) in fact
implies that with high probability, only a finite number of classes (indepen-
dent of n) need ever be considered. So then, the main computational burden
is in the computation of the minimum distance estimate f,;. To date, we
do not know any method for its precise computation. Discretized methods
and randomized methods that provide acceptable and computationally fea-
sible approximation have been used in the simulation study of Devroye [14].
However, those simulations only involve one-dimensional problems, and thus,
much more work is needed. In fact, the exploration of the relationship be-
tween class complexity, computational complexity and approximation seems
very interesting. One may follow the role model of pattern recognition and
machine learning, where these connections have been thoroughly studied. In
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machine learning, the criterion to minimize is the empirical probability of
error over a class of estimates (Devroye, Gyorfi and Lugosi [15]). No one
knows how to do this exactly using limited computation. This has sparked
the emergence of methods such as boosting (Freund and Shapire [22], Lu-
gosi and Vayatis [31]) and approximate support vector machines (Schoélkopf
[41], Vapnik [45]). One should approach the computation of f, ; in the same
manner.

The results of this paper are being used to test model complexity (is f € Fy
or not?), see Biau and Devroye [4]. Our methods also influenced the penal-
ized model selection procedure of Bunea and Wegkamp [7] in nonparametric
regression.

4 Proofs

Throughout this section, we let (A)i>1 be the sequence of Yatracos classes
associated with the models (Fj),>1. For each k > 1, we assume that the
Vapnik-Chervonenkis dimension V, of A is finite and we let V}; be a real
number satisfying V, < Vi. Recall that the letter C' stands for the universal
constant of inequality (2.4).

Before proving Theorem 3.1, we state a technical proposition and two lemmas
that are interesting by themselves. Proof of Lemma 4.1 is a straightforward
consequence of inequality (2.4).

Proposition 4.1 Assume that Fy is closed for the Ly metric on densities
and that Ay contains a w-system that generates B. Then Fy is closed for the

Dy, metric on densities, defined by
A A

Proof First observe that the fact that Ay contains a m-system generating
B forces Dy to be a metric on densities (see, for example, Billingsley [5]).
Note also that, according to Scheffé’s identity (Devroye [13], page 2), for two
densities f and g,

Di(f,g) = sup
A€eAg

Dufo) <y 19 (@.1)

and, whenever f,g € Fy,

Dult.9) =5 [ 1f =9, (1.2
9



Now, let (fn)n>1 be a Cauchy sequence in Fj, for the Dy metric. Clearly,
according to (4.2), (fn)n>1 is also a Cauchy sequence for the L; metric. By
assumption, Fy is closed for the L; metric on densities. Since the subspace of
densities is closed in the complete space L, F is also complete as a subspace
of densities. Therefore, one deduces that there exists f € JFj such that
[ |fa—f] — 0 asn — co. According to (4.1), this implies that Dy(fn, f) — 0
as n — oo. Thus the set Fj is complete, and therefore closed, for the Dy
metric. |

Lemma 4.1 Consider some arbitrary family of positive numbers (yi)x>1-

Then
{ [ sup /f pn (A ‘ yk+cm]} <QZ€_2yk.
k>1 LAEA v E>1

Lemma 4.2 Assume that A, contains a w-system that generates B. Con-
sider some universal constant M and some family of nonnegative weights

(xk)k>1 such that
Ze‘”i <M.

k>1

Let f, ; be the penalized minimum distance estimate defined in section 2 and
ko = mm{k >1:f € Fp}. Then, with the choice

ﬂﬁk-i-C\/Vk

pen, (k) = N

(4.3)

one has, for all n large enough,
P{k <k} < 2Me 2"
Proof For each n > 1, denote by €2, the event

xk+0\/7k 1
sup f pin (A
lc>1 A€A

- Vn T
From Lemma 4.1, we know that
P{Q,} > 1—-2Me 2",

If ky = 1, the proof is clear. Assume that ky > 1. We have
P{k > ko}

> P{ sup

AEAkO

[ - un(A)‘ + pen, (ko)

/Afn,k - ,un(A)‘ + pen”(k)] } .

10
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1<k<ko—1 | AcAy



By the triangle inequality, for kK =1,..., ko —

/fnk— f‘

/ Jrg — Un(A)‘ + pen, (k) > sup
A

sup
AcA, A€A
— sup / f- ,un(A)‘ + pen,, (k).
A€A A

Using the particular choice (4.3) for the penalty function, we deduce from
above that, on €2,

[ s un(A>\ ¥ pennuc)]

fr=]e

By assumption, 4;-and thus each A;—contains a w-system generating B.
Since the F;’s are closed for the L; metric on densities, we know from Propo-
sition 4.1 that they are also closed for the Dy metric. Therefore, the definition
of ky implies m > 0.

min sup
1<k<ko—1 | AcA,

> min inf sup

1<k<ko—1 9E€Fk Ac A nl/6

Moreover
sup / Frko — ,un(A)‘ + pen,, (ko) < sup / f— un(A)‘ + pen,, (ko) + —
A€ A, A A€Ag, A

(by definition of f, k)

1 1
W + E ’
(on the set )

< 2pen, (ko) +

and this bound is (strictly) smaller than m — 1/n'/® for all n large enough.
Therefore, for all n large enough,

2/3

P{k >k} >P{Q,} >1—2Me "

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 Let £ > 0 be given. Denote by {2; the event
zr + CVVj
[ sup / f=pa(A)] <= E
E>1 A€EA

<= "
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The very definition of the penalized estimate leads to

sup
AEA@

[ b= )|+ pen, () < sup
A

AEAkO

[ s~ un(A)‘ + pen, (ko).

/Afn,k — tn(A)

Since, for every k£ > 1,

/A fu

/f— Mn(A)‘ < sup
A A€Ay

sup — sup ,
A€Ay AcAy
we obtain
sup /fn,,;—/f‘— sup /f—un(A)‘+penn(k)
AEAE A A AE.A,;c A
< sup / Jrko — un(A)‘ + pen,, (ko) .
AE.AkO A

Thus we deduce that

sup /fn,ig—/f‘ < sup /f—un(A)‘+Penn(ko)
AEA,; A A AE-AkO
+ sup /f fin (A ‘—pen (k) +
AeA;,

(by definition of f, x,)
< sup

t
Acdy, /f ,un )‘+pen (kO) \/ﬁ_‘_

(on the set €;)

2t 1
< 2pen, (ko) + —= + - (4.4)

vn

(on the set €;)

S|

Rephrasing Lemma 4.1, we know that
P{} >1—2Me™ . (4.5)

Define now

Z = [ sup
A€A;

[t [ o]~ zvensia - 2.

Inequalities (4.4) and (4.5) lead to

P{Z >t} < 2Me™?".

12



Therefore, using the fact that E{Z} < [[°P{Z > t} d¢ for any integrable
random variable Z, we obtain

M+/2 1
E{ sup /fn;c—/f‘}SQpenn(ko)—l— W—f——.
AEA,; A ’ A

Vn n

According to Lemma 4.2, for all n large enough, P{]Aﬂ < ko} < 2Me 2",
Observing finally that, for k> ko,

[t [1]=5 [10a- 11

one deduces that, for all n large enough,

sup
AEA,‘C

2M~/ 2w 2 —on
E{/|fn,1‘c_f|} < 4vpen, (ko) + NG +H+4Me m?e
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