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Let f be a density on the real line and let f,~ be the kernel estimate of f
in which the smoothing factor is obtained by maximizing the cross-validated
likelihood product according to the method of Duin and Habbema, Hermans
and Vandenbroek . Under mild regularity conditions on the kernel and f, we
show, among other things that f Jf,~ - f ( --~ 0 almost surely if and only if the
sample extremes of f are strongly stable .

1. Introduction . Let X1 , X2 , . . . be an i.i .d. sequence of random variables
with distribution function F and density f and consider the kernel density
estimate [Parzen (1962) and Rosenblatt (1956)]

1 n ,

	

x-Xi
(1 .1)
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where the kernel K is a nonnegative function such that

(Ki)

and

(K2)

maximizing

(1 .2)

where, for j =

(1 .3)

Inspired by maximum likelihood theory, Habbema, Hermans and Vanden-
broek (1974) and Duin (1976) proposed selecting the smoothing factor h > 0 by
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log fn,'h('1j)'
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1, . . . , n and n >- 2,

fn,'h(x)

JK(t)~

	

dt = 1

for some r > 0, R > 0, m > 0 and M > 0,

ml[_ r, r](x) < K(x) < M1[_R R] (x) for all -00 < x < 00 .
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To avoid any problem concerning the existence of a maximizing value of h, we
will denote in the sequel by hn any positive number such that

( 1 .4 )

	

L(h) >_ supLn(h) -
h>0

where C > 0 is a fixed constant .
The resulting f n = f,, h,, is the so-called cross-validated maximum likelihood

kernel density estimate . In this paper, we are concerned with the L 1-consistency
of In . It is known [Chow, Geman and Wu (1983) and Devroye and Gyorfi [DG]
(1985), pages 153-154] that whenever f has compact support, then almost surely
as n -p 00,

(1 .6)

C
n

(1 .5)

	

J00 Ifn(x) - f (x)I dx -~
- o0

On the other hand [Schuster and Gregory (1981) and Hall (1982)], some
evidence has been found that the validity of (1 .5) depends heavily upon the tail
behavior of f . Our first theorem stated below confirms this phenomenon by
showing that (1 .5) may be characterized in terms of the stability of the extreme
values of the sample .

Following Geffroy (1958), Barndorff-Nielsen (1963) and Resnick and Tomkins
(1973), we say that a random sequence Yn is stable (resp . strongly stable) if
there exists a nonrandom sequence yn with Yn - yn -p 0 in probability (resp .
almost surely) as n - c . We will consider the case where Yn = Xi n (resp .
Yn = Xn , n ) and X1, n

	

_< Xn, n denote the order statistics of the sample
X1 , . . ., Xn .

THEOREM 1 . Under (K1) and (K2) :

(i) Assume that almost surely (resp . in probability) as n -~ oc,

0 .

j00

Ifn(x) - f(x)I ~ ~ o .

Then the sample extremes X1, n and Xn , n are strongly stable (resp . stable) .
(ii) Conversely, i f the sample extremes X 1, n and Xn , n are strongly stable

(resp. stable) and if (1- F)/ f is monotone in the upper tail and F/ f is
monotone in the lower tail, then almost surely ( resp. in probability) as n - 00,
(1 .6) holds .

In view of Theorem 1 and of the simple form of In , it is tempting to
recommend this estimate for all distributions with strongly stable sample ex-
tremes (see Lemma 5 below). However, there is evidence that cross-validated
maximum likelihood kernel density estimates may have worse asymptotic perfor-
mances in terms, for instance of E( f ( fn - f I ), than those achieved by nonrandom
choices of h = h(n) in (1 .1) [see, e.g ., Hall (1982)] . It is therefore interesting to
evaluate more closely what kind of asymptotic rate may be achieved by fn under
some general regularity assumptions on the tail behavior of f . It turns out that a
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suitable class for our needs is provided by all distributions whose extremes
belong to the domain of attraction of a Gumbel law, i.e., for the maximum Xn, n,
such that there exist nonrandom sequences a n > 0 and bn with

(1 .7)

	

lim P(an 1 (Xn, n - bn) < x) = exp(-e -x) .
n--o0

As we shall see in the sequel, this implies that, for any E > 0,

(1 .8)

	

lim neE

	

(fn(x) - f(x)I)dx = oo,

which is disastrous to say the least (this is in particular the case of the normal
distributions which have strongly stable extremes in the domain of attraction of
Gumbel laws ; see, e.g ., Remarks 1 and 2 in the sequel) .

The main conclusion of these results is that in such nonparametric estimates
where a smoothing factor is chosen as a function of the data itself, the tail
behavior of the underlying distribution may have crucial effects. This leads to
the idea that one should transform or truncate the data in order to eliminate
these disturbances .

Moreover, the above technique of cross-validated maximum likelihood does
not give a viable estimate in general . In fact, this method tries to optimize the
Kullback-Leibler norm [Hall (1987a, b)] which is quite pathological in a number
of ways and not adapted to Lp-consistency . It should be therefore used only for
distributions with compact support [see also Marron (1985)] and densities having
positive limits in the tails .

In the remainder of our paper, we prove Theorem 1, jointly with some
technical results of independent interest . In our proofs, we choose C = 0 in (1 .4) .
The general case of C >- 0 follows after routine modifications .

2. Strong stability is necessary . Let Dn = maxi i < n mini < j i < n lxi -
Xj for n >_ 2. We prove in this section the following theorem .

THEOREM 2 . Assume that K satisfies (K1) and vanishes outside o f [-1,1] .
If

(2.1)

	

JIf(x)

	

n - f (x)I dx -~ 0 a .s . as n

	

oo,

then Xn, n is strongly stable and hn -~ 0 and Dn - 0 almost surely as n -~ oo .

PROOF . We note (see Lemma 1 below) that hn -p 0 as. Moreover [Schuster
and Gregory (1981)] the inequality
(2.2)

	

hn >_ Dn

implies that Dn -~ 0 as. This, in turn, requires that Xn, n - X,_ 1 , n -~ 0 a.s .,
which by a result of Geffroy (1965) is equivalent to strong stability of X, n . 0

The following lemma states a general result of independent interest .



LEMMA 1 . Let fn, h be a kernel density estimate where K satisfies (K1), f is
an arbitrary density and h = h(n ; X1 , . . ., X)> 0 is a measurable function o f n
and o f the data . Then, if almost surely (resp. in probability) as n -' 00,

(2 .3)

h
N
-~ 0 almost surely (resp. in probability) as n -' oo .

PROOF. Denote by fn, h the estimate given in (1 .1) with Xn+~~ • • • X2,
replacing X1 , . . ., Xn and set f,~ = f,~, h . Lemma S2 in Devroye (1987) jointly
with the observation that h is independent of Xn+ 1~ • • • X2 ,, implies that
In - E(I,jXl, . . . , X,) -' 0 a.s. as n -' 00, where In f (fn - f I and In

f I f n - ft . Since E(In) - E(In) -' 0 as n -' 00, our 'assumptions imply that
E (In IX1 , . . . , Xn) -' 0. The proof now proceeds as in Theorem 4 in DG [(1985,
page 8). We limit ourselves to the as. part. Let f have characteristic function
(chf) 4), let K have chf 4 and denote by 4 n the empirical chf based on
X, 1 , . . .,+

	

X2, . Then fn, h has chf
1 2n

	

-
_ ~ eitXf,~,(th) _ ~n(t)~(th) .
n j=n+ 11

Thus

J ~ I fn~x~ - f
(x)I dx

~ SUplc~n(t)i~(th) -
t

>- sup I1- (th)I I4)(t)I - sup I~n(t) - ~(t)I
ItIc

	

ItIc

for arbitrary C . Since the Glivenko-Cantelli theorem implies [see, e .g., Laha and
Rohatgi (1979), page 153] that suplti

<c(4)n(t) - 4)(t)I -~ 0 a .s. and in the mean asN
n -~ oo, the fact that E(IniX1 , . . . , X,) -' 0 as. implies that (th) -' 1 as. for
all t in a small neighborhood of the origin . We conclude from this and the fact
that is a chf of a density [which implies that is continuous, I P (s) I < 1 forN
s 0 and (s) - 0 as I s I- oo ] that h- 0 a.s. 0

Theorem 2 proves the easy half of the almost sure version of Theorem 1 . The
second half of the proof is captured in the following section .

3. Strong stability is sufficient. We will make use of the following result
[see, e.g ., Devroye and Penrod (1984), page 1232 and DG (1985)] .

N

	

N
LEMMA 2 . Assume that (K1) holds and that hN h(n ; X1 , . . ., Xn ) - 0 is a

measurable function o f n and X1 , . . ., X, . Then h -p 0 and nh oo a . s . as
n - oo imply that fIf,n h(x) - f (x) I dx - 0 a. s .

Having Lemma 2, and Theorem 2, the proof of the almost sure version of
Theorem 1 boils down to the verification that hn - 0 and nhn - 00 as. This is
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f tfn,A(x)~

	

- f (x)I dx ~ 0,
- o0
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done in Theorems 3 and 4 below. Basically, the condition nhn -p oo always holds
and has nothing to do with the tail behavior of f . The stability of the extremes is
required to show that hn -p 0, which represents the most difficult part of the
proof.

THEOREM 3 . Assume (K1) and (K2). For any density f, the cross-validated
choice hn of h satisfies

nhn
(3 .1)

	

hmmf

	

> 0 a .s .
n--* oo log n

PROOF. Take a large constant A and define
Dn = max

	

min

	

IXj - Xti ~,
is IXjI<A 1<j i<n ; IX~I<A

if at least two Xi s fall in [-A, A], and Dn = 0 otherwise (for 1 < i, j < n) . Let
N be the number of Xi 's in [-A, A] (for 1 < i < n) . Obviously N/n f-A f
a.s . as n -~ oo, which (by assuming A large enough) is strictly positive. Since the
(conditional on N) density of these N r.v.'s is proportional to f '[-A, A], we may
apply Lemma 16 in DG [(1985), pages 181-183] to obtain that on the event
{N-~ oo},

NDN
hm mf to

	

> 0 a.s .,
N-* oo gN

where DN maxi i n mini < j i < nlXi - Xj ~, with the Xi 's and Xj 's restricted
to [-A, A] . This, jointly with the inequalities Dn >- D, = DN, implies (3.1) as
sought. 0

THEOREM 4 . Assume that K satisfies (K1) and (K2) . Then, for any density f
such that the sample extremes Xi, n and Xn, n are strongly stable together with
(1 F )/f being monotone in the upper tail and F/f monotone in the lower tail,
the cross-validated choice h n of h satisfies h n -p 0 almost surely as n oo .

PROOF. We follow the proof of Theorem 6.4 of DG (1985) corresponding to
the case where the support S =_ {x : f (x) > 0} of f is bounded. We use the same
notation, with the exception of T == S n [-A, A], where A is a large constant.
We see that :

(i) Lemmas 6 .10 and 6.12 remain valid if all integrals are taken over T.
(ii) Lemma 6.11 remains valid without change .
(iii) Lemma 6.13 is in general false when S is not compact. It is replaced by

Lemma 3 below.
(iv) Lemma 6.14 is crucial to the proof. It is restated and proved in a more

general setting in Lemma 4 below .

We now conclude the proof of Theorem 4 by mimicking the proof of Lemma
6.15 without change . Note that this proof requires parts (C), (E), (G) and (H) of
Lemma 3, the monotonicity condition on (1- F)/f and F/f , and Lemma 4



presented below. We have to verify that property (H) of Lemma 3 can be
applied. To do so, we note that the ultimate monotonicity of (1- F)/f in the
right tail and the stability of X,, , together imply that (1 - F)/f - 0 as x - 00

(see Lemma 5 and Remark 1 below) .
The following Lemma 3 states some useful properties of the entropy needed in

our proofs . In the sequel, we assume without loss of generality that R = 1
in (K2) .

LEMMA 3 . Assume (Kl) and (K2) and that f is a density with strongly stable
extremes. Then :

(A) ff log_( f * K h ) > - 00 and ff log_( f * uh) > - 00 for all h > 0, where
log_ = min(log, 0), Kh = h- 'K( . /h) and uh is the uniform density on [- h, h] .

(B) fflog_f> - 00 .

(C) ff log( f * Kh) < ff log f for all h > 0 .
(D) For a fixed h > 0 and a sequence hn -p h, we have

sup l f * Kh~ - f * KhI 0
x

as n -~ oo .
(E) ff log( f * Kh) is continuous in h on (0, oo) .
(F) limb o ff log( f* Kh) = f f log f whenever

lim lim inf inf ( fA + f = ~) f log_ ( f * Kh) = 0.
AToo h->O

(G) hm h

	

ff log( f * Kh) = - 00 .

(H) Property (F) holds when conditions (i) and (ii) below hold simultane-
ously: (i) f has bounded support on the right, or the right tail o f f is infinite and
f/(1 - F) is ultimately nondecreasing . (ii) f has bounded support on the left, or
the left tail of f is infinite and f /F is ultimately nonincreasing .

PROOF. If S is bounded, then Lemma 3 is contained in Lemma 6.13 of DG
(1985). So we assume without loss of generality that F(x) < 1 for all x.

(A) The first statement of (A) follows from the second one and (K2) . For the
second one, we will make use of the fact (see Lemma 6 in the sequel) that if
Q(u) = inf {x :1 - F(x) <- u } for 0 < u < 1, the stability of X,~, , implies that for
all C > 1,

(3.2)

	

Q(1/Cx) - Q(1/x) - 0 as x

	

oo .

Let A = kh, where k >- 1 is an arbitrary integer . By partitioning the interval
[-A, A ] in 2 k disjoint intervals of length h having probabilities p~, i = 1, . . . , 2 k,
we see that

fA
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f log( f* uh ) ~ ~ p`
log(-j1

i=1

2k
e

-

	

- log(2h) > - 00,

where we have used the fact that infx, 0 x log x = - 1/e . Choose by (3.2), m >-1
so large that Q(2 - ` - 1 ) - Q(2- `) <- h for all i >- m, where m >- 1 is such that
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Q(2m) _< A <_ Q(2-m-1). We have
F(x+h)-F(x-1A f log( f*uh) - 1A f(x)log(	2h )

dx

Q(2 - ` - ')>f

	

f (x)log_(F(x + h) - F(x - h)) c~
i=m e(2- `)

-log(2h)f °° f (x) dx .
A

Since F(x + h) - F(x - h) > F(Q(2-i-1)) - F(Q(2 -i )) = 2 -i-1 for Q(2 -i )
x < Q(2 - i_1), this last expression is greater than or equal to

00

	

00 (i + 1)log 2
2 i l jog- 2- `- 1- log(2h) _ -

	

i+i

	

log(2h) > - oo .2
This, jointly with (3.3) and a similar argument used in the lower tail,

completes the proof of (A) .
(B), (C) By Jensen's inequality, fs f log((1/f ) f * Kh) -< log( fs ( f / f ) f * Kh) _

log( fs f * Kh) . We are done if ffs * Kh < 1, so assume that fs f * Kh =1. Since
equality in Jensen's inequality occurs if (f * Kh)/ f = f * Kh a.e. in S, we must
have f(x) =1 whenever f * K(x) > 0 . Thus ff - f * Khj = 0, which by the
arguments used in the proof of Lemma 1 implies h = 0, a contradiction .

In view of (A) and of the inequality (C) so obtained, we have ff log f >-
f t log( f * Kh) >- ft log_( f *Kh) > - oo, and hence ff log_ f > - oo . This es-
tablishes (B) .

(D) By (K2), and using the same "o(1)" convention as in Lemma 1 in DG
(1985), page 156,

~f tit (Khn - Kh )l ~ CfKh n - Kh l + sup(Khn(x) + Kh(x)) f ~
c

f

< o(l) +
2M+0(i)

where C > 0 is an arbitrary fixed constant. (D) follows from the fact that we can
make the last term in the bound above as small as desired .

(E) This part follows from Lebesgue's dominated convergence theorem if, for
some 0 < 6 < l,

(3.4) ft log+ ( sup f * K,) S oo and ft log_( sup f * K,)> - oo ,
vEH

	

vEH

where log= max(log, 0) and H = [h(1 - 6), h(1 + 6)] . By (K2), routine argu-
ments show that
(3 .5)

	

af * u b -< inf f * Kv <_ sup f * Kv _< A f* uB ,
vEH

	

vEH

for some suitable choices of positive constants a, A, b and B . A joint application
of (A) and (3 .5) completes the proof of (3.4) as sought .



(3 .6)

(3•7 )

In view of (C), routine arguments based on (3 .6) and (3 .7) complete the proof
of (F).

(G) Is a consequence of Fatou's lemma by which

lim inf f { - f log _ ( f *Kh ) } >_ ft lim inf (- log _ ( f * Kh)) = oo .h-~ oo

	

h-• o0

(H) We limit ourselves to show that limA T lim inf h o fX f log_( f * K h ) = 0
under (i) . A similar proof holds for fT under (ii) . The case of bounded support
is again proved in DG (1985) . In the second case, we have, for A large enough
and y >- A - 1,1 - F(y) < f (y)/C for some constant C. Also, we can choose A
such that (1 - F)/f

. above A - 1. Thus by (K2),
00

	

00

	

mrhC(1- F(x))
f log( f * Kh ) >-

	

f log
A

	

A

	

2h

mrC
=log	 ff+fflog(1_F),foro<h<1=R .

2 A

	

A

The first term of this last expression can be made small by choosing A large
enough. The second term is equal to (1- F(A))(log(1- F(A)) - 1) - 0 as
A -~ 04, hence the result . 0

LEMMA 4. Let I = [c1 , c2 ] C (0, oo) be foxed and let L(h) be as in (1.2) .
Then, under the assumptions of Theorem 4,

(F) Lemma 6.13 in DG (1985) shows that, for any finite interval [-A, A],

We also have, by Fatou's lemma,

PROOF. Let L n1(h) _ (1/n) 1 ' [A, A](X3)log f, 31 (X) and Ln2(h) _
(1 /n ) ? =1'[A, 0 (Xj)log

	

It is easily verified that for any fixed constant
A > 0, we have

sup
h€l
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him fAf log( f*Kh) = jAAf log f .

lim inf f°°t log+ ( f * Kh ) >_ ft log+ f .h j 0 ,q

lim sup sup
n -> 00 h€l

L 1(h) -

Ln(h) -

I f log( f*Kh)

ff log( t*xh) - 0 a.s .

-p0 a .s .asn-oo .

Hence, ignoring the left tails without loss of generality, we are done if we can
show that for any fixed e> 0 there exists an A large enough so that

(3 .9)

	

inf f°°t log( f * Kh)> - E and sup f°°f tog( f * Kh) < ~hEl A

	

h€l A
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together with
(3 .10)

	

lira sup sup Ln2(h) < E and lira inf inf L 2(h) > - E a .s .
n-~oo hEl

	

n-->oo hEl

In the first place, (3.9) follows from parts (A) and (E) of Lemma 3, jointly with
(3.5) (in which we replace H by suitable intervals in terms of c 1 and c2) .

Next, we note by (K2) (recall that R =1) that fn(X) < (MN~)/(nc1),
where N~ is the number of points (not including X~) falling in [ X~ - c2 , X~ + c2 ]
and h E I. Since N~ < n, we have

1 n

	

M
L2 (h) _< -

	

1 [A, o~)(X; )log

	

N~
n j=1

	

ncl

1

	

M\'
--log -

	

1 [A, ~)( X~) for all h E I,
n C l 1 ;=1

which in turn can be made almost surely less than e in the upper tail if we
choose A in such a way that ff A -< 2E/log(M/c 1 ) . This proves the first state-
ment in (3.10) .

To complete our proof, assume without loss of generality that r = 1 in (K2)
(R being now arbitrary). By a similar argument as used for (3.11) we have

1 n

	

m
(3.12)

	

L2 (h) _< -

	

1 [A, ~)(X;)log

	

Ni .
h j=1

	

nc2

By choosing A in such a way that ff A -< 2E/log(m/c2 ), we see that all we
need is to prove that

1 n

	

n~

	

1(3 .13)

	

hmmf -

	

1[A , OO)(Xf)log

	

>- - 2 E a.s .
n--* oo n =1

	

n

In view of (3.13) and (3.12), the proof of (3 .10) completes the proof of Lemma
4 . Observe that in the proofs of Lemmas 3 and 4, we have used the stability of
extremes in (3 .2) and (3.13). In the remainder of this section, we prove these two
statements. 0

Our next lemma captures some useful properties of distributions with stable
extremes. Its proof follows from routine Karamata-type representations used
jointly with characterizations such as given in de Haan and Hordijk (1972) and
Deheuvels (1984) . We omit details [see also Seneta (1975), Barndorff-Nielsen
(1963) and Geffroy (1958)] .

LEMMA 5 . Let Q(u) = inf{x : l - F(x) <_ u} for 0 < u < 1 . The stability of
Xn, n is equivalent to :

(A) Q can be represented in a right neighborhood of zero by

(3 .14)

	

Q(u) - q(u) + fC/uE(S )
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where q (u) is bounded with finite limit ~1o as u . 0, C > 0 is a constant and e(s)
is a continuous nonnegative function with limit zero as s -p oo .

Assume further that f is a density such that f/(1 - F) is ultimately monotone
and that F(x) < 1 for all x. Then i f Xn, n is strongly stable, limx

T
f (x)/(1 -

F(x)) = oo, and :
(B) Q can be represented in a right neighborhood o f zero by

(3.15)

	

Q(u) = 8(u)
+ 1/u «(S)

ds,c slog log s
where 9(u) is bounded with finite limit 00 as u 0, C > e is a constant and a(s)
is a continuous nonnegative function with limit zero as s - oo .

Conversely, if (B) holds, then Xn n is strongly stable .
REMARK 1 . Since Q'(u) = 1/f (Q(u )), the change of variable u =1 - F(x)

used jointly with (3 .14) leads to the sufficient condition for stability of Xn n
[Geffroy (1958)],

1-F(x)
(3.16)

	

hm

	

= 0 .
x~oo

	

f (x)
Likewise, (3.15) gives the the sufficient condition for strong stability of Xn n

[de Haan and Hordijk (1972)],
1-F(x)

	

1
(3 .17)

	

hm	log log

	

= 0.
x~oo f (x)

	

1- F(x)
Using (3 .17) it is easily verified that the normal distributions have strongly

stable extremes . Moreover (3.16) motivates the monotone-failure-rate-type as-
sumptions in Theorem 1 .

PROOF OF (3.2) . This statement follows directly from (3.14) . D

PROOF OF (3.13) . We make use of the representation in (3 .15), assuming
without loss of generality that Q(1) = 0, Q(0) = oo and that for i = 1, . . ., n,
X,_ i + 1, n = Q(U~, n ) where U1, n < . . . < Un, n are the order statistics of i .i.d .
uniform (0,1) random variables with empirical distribution function U(x) _
n -1#{1 < i <- n : U~, n -< x} .

Fix an arbitrary t > 0 and let p(u) = 1- F(Q(u) - t) and a(u) =1 -
F(Q (u) + t) for 0 < u < 1 . If (3 .14) holds, then for any 0 < < 1, there exists a
u0 > 0 such that for all 0 < u < u0 ,
(3 .18)

	

p(u) < u<u<u/ <a(u) < 2 .
Moreover, by (3 .15), for any A > 0, there exists a 0 <u1 <u0 such that for all

0<u<u1,

1

	

-2A

	

1

	

X
p(u) <u log -

	

<u<2u log -u
(3.19)

	

2a

	

u
1

< u log -

	

< a(u) and 4p(u) < o(u) .u
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Denote by Nn(a, b) _ # {a < Xj <_ b: l _< j < n } the number of Xi's falling
in (a, b] . Obviously

Nn(Q(u) - t,Q(u) + t) =Nn('`~(a(u)),Q(p(u)))
(3. 20)

- nUn(a( u )) - nUn(p(u)) .

To evaluate this last expression, we use the fact [Csaki (1975, 1982)] that for
any nondecreasing sequence I n of positive constants such that 1 1/(nln) < oo,
we have

1/2

	

IUn(t)- tl
(3 .21)

	

hmsupn

	

sup

	

= 0 as.
n~oo

	

0_tS1 lnVt(1 - t)

If we take in = log n in (3.21), we see that, almost surely as n

(3 .22)

	

sup IUn(t) - t//t(1 - t) = o(n-1/2 1ogn) .
0<t_<1

Note that Q(u) ,~ 0 asuJ, 0. Moreover, by (3.18), u -1Q(u) - oo as u 0. It
follows that (log n)/ Ina(u) - 0 as n - oo, uniformly in u >_ 1/(n log2 n) . By
(3.22), this implies that

(3 .23)

sup
1/(n loge n) <_ u_< uo

log n
=o	

~na(u)

U(Q(u)) - U(P(u))

	

P(u)
Q
(u

)	 - 1 + o( u)

0 as. as n -* oo .

We will now take in (3.23) u = Uj, n and consider the following two cases .

CASE 1 . Let 1/(n loge n) _< Uj, n < n -1/4 We note [Barndorff Nielsen (1961)
and Geffroy (1958)] that P(U1, n <_ 1/(n log e n) i.o .) = 0. Moreover, if n is so
large that n -1/4 < u1 < u o , by (3.19), we have 1- (p(u)/Q(u )) >_ 4 > 2 . It
follows from (3.19), (3.20) and (3.23) that, almost surely for n sufficiently large,
uniformly over all Uj, n <_ n-1/4 , we have

Nn(Xj, n - t, X j, n + t) ~

(3 .24)

	

n

	

1

	

2a

	

1
n log U

	

>_ nUj , n log
U

•)
j , n

	

j, n

oo,

Choose now A = 4 . Using again the fact that P(U1, n <_ 1/(n loge n) i .o .) = 0,
it follows from (3.24) that, ultimately with probability 1, for all Uj, n < n - 1/4 ,

log 4(n log e n)
(3 .25)

	

Nn (Xj, n - t, Xj, n + t) >_

	

log2

	

> log n .
n

CASE 2 . Let n -1/4 < Uj, n _< u1 . Another application of (3.22) shows that in
this case, n U, n j uniformly in j. Hence by (3.19), using again the fact that
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p (u) < 4Q( u ), we have ultimately with probability 1, for all n-1/4 -< L1 n _< u1,

(3.26)

	

Nn( Xj, n - t, Xj, n + t) >j/2 > log n .

Moreover, for any fixed 0 < a < 1, we have ultimately with probability 1,
1 <- j <- 2 n a whenever Uj, n < a, and j <- n 4"5 whenever Uj, n < n-1/4

Let now t = c2 , and consider (3.13) . Recall that

NJ Nn( XJ, n - t, XJ, n + t) - 1 .

Set a =1 - F(A) <u1 and observe, by (3.24) and (3 .26), that almost surely as
n - oo,

n

100

n[A, ~o) ( Xi)1o (

	

)j=l

1 [n4/5]

	

log n
>- -

	

log

	

+
n j=1

	

n

	

n =[n4/5]+1
1 [2na]

E lo(
.1

2n )

a
-~ 2 (log s) ds = 2a(log a -1) _ -D(a), for a <u1.

0

The observation that D(a) may be chosen as small as desired when A is
sufficiently large completes the proof of (3.13). 0

The proof of the strong part of Theorem 1 is now completed . In the following
sections, we consider the weak limiting behavior of f fn - f ~ .

4. Weak laws. In this section, we give the proof of the weak version of
Theorem 1. First, we argue as in the proof of Theorem 2 that f fn - f I p 0
implies Dn -~p 0, and hence that Xn, n - Xn-1, n ~P 0. Obviously, this implies
(3 .2) which being equivalent to (3.14), implies the stability of Xn, n . A similar
argument holds for X1, n •

A close look at the proof of Theorem 3 shows that it remains valid with "in
probability" replacing "almost surely ." The only change is to replace (3.13) by
the statement that, for any fixed t > 0 and > 0, there exists a finite constant A
such that

1 n

	

Nj
(4 .1)

	

lim sup P -

	

1[A, ~ ) (Xf)log

	

>_
n

	

- < 6 .
n-oo

The proof of (4.1) is similar to that of (3 .13) with slight modifications. Let
0 < < 1 be such that for all 0 < u < u o = u0(), (3.18) holds . By Wellner
(1978), we have

(4.2)

	

lim liminf P(u/r~ < U(u) < urn : U1,n -< u -< 1) =1 .
nToo n--'oo
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Since Un (u) = 0 for 0 < u < u 1, ,~, (4 .2) ensures that, for any 6 > 0, there exist
rj> 1 and n0 such that n >- n 0 implies

Un(a(u)) - Un(p(u))

	

1
P	>-

(4.3) a(u)

	

~
1

>1--E.3
Choose in (3 .19) in such a way that ,~222

Un(a(u))-Un(p(u))

	

3

	

1
P	>

	

:U1<-a(u),u<-u0 >1--6,
of u)

	

4~

	

3
which, in view of (3 .18) and (3 .20) and by setting u = U ,, implies that

P Nn(XJ,n - t, XJ,n + t) > 2nUj,n' 1 ~J < nUn(u0)) > 1 3£,
where we have used the fact that a(u)/r~ >

	

= 2u. By (4.2) this implies
turn that

3j

	

2
(4 .4) P Nn(Xj, n - t, Xjn + t) > - :1 < j -< nUn(u0) > 1 - -£.2~

	

3
Set now a = 1 - F(A) < u 0 and n 1 >- n 0 such that for all n >- n 1 ,

P(Un(u 0 ) < 1 - F(A)) < 3~. We have by (4 .4),

PI

(1

1 n

	

Nj
-

	

1[A 00)(Xj )log --
n j=1

	

n

1 [na]

	

( 3J 1
<_ e + P1- ~ log(	

n j _ 1

	

~ 2r~n

q 2P(u)

a(u)

4 . We have by (4.3),

in

6)

6)

U1,n~ Q(u)

for n >- n 1 ,

which is equal to E for n sufficiently large and all 0 < a < u o such that
fo log(3x/q) dx >- - 26.

This completes the proof of (4 .1) . The proof of Lemma 6.15 in DG (1985)
requires small changes . We omit the details .

5. Bad performances of cross-validated estimates : The Gumbel case .
In order to motivate this section, we consider a distribution with stable maxi-
mum X,~ ,1t , i .e ., such that Q(u) = inf {x :1 - F(x) < u} has the representation
(3.14) of Lemma 4 . We introduce the additional regularity condition that (3 .16)
holds, i .e ., that

1-F(x)

	

u
(5 .1)

	

hm

	

= hm

	

= 0.
xT'oo

	

f (x)

	

uJ,O f(Q( u))
By (5.1), we see that the representation (3 .14) may be stated as

1/u £(S)
(5 .2)

	

Q(u) _ X10 + J	 ds for O < u -< u 0 ,
C

	

S

where C > 0, 'q and 0 < u o < 1 are suitable constants and E(1/u) = u/f(Q(u)).
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J

In the case where the support of f is unbounded above, the positive function
6(s) must satisfy simultaneously to the conditions

006(8)
(5 .3)

	

6(s) - 0 as s - 00 and

	

ds = 00 .
0

	

s
In view of (5.3), if we additionally assume that 6(s) has regular variation in

the upper tail, the only possibility is that 6(s) is slowly varying at infinity, i .e .,
E(AS) = 1,

	

1
F(s)

where 6(s) _ (sf(Q(1/s))}

for s >- so =
1
u o

It turns out [see, e.g., Gnedenko (1943), de Haan (1970) and Sweeting (1985)]
that the condition (S) implies in general that Xn, n belongs to the domain of
attraction of a Gumbel distribution, i .e., that

lim P(Xn n - bn -< ax) = exp(-e -x),
n ~ o0

(5 .4)

where
(5 .5)

	

an = 6(n) = 1/(nf (Q(1/n))} and bn = Q(1/n) .
Under (S) (note that here, we do not necessarily assume that the support of f

is bounded above), it is clear from (5 .4) that a necessary and sufficient condition
for Xn, n to be stable is that an - 0 which coincides with the (sufficient)
condition (3.16) . Moreover, straightforward computations [see, e.g ., Lemmas
4-10 and Remark 2 in Deheuvels (1986)] show that

lim P(Xn, n - Xn-1, n > anx, Xn-1, n - X,_2,,,,> a
any)

n- 0O

=exp(-x -2 y) for all x>-0 and y>-0 .
In view of (5 .6) and of the slow variation of an , we see from (2.2) that

(5 .7)

	

for any 6 > 0, lim nEhn = 00 in probability .
n ~ o0

Thus, for all distributions in (S), the rate of convergence to zero of hn is
dramatically slow. The purpose of the following propositions is to show that the
same holds for f fn - f .

THEOREM 5. Under (Kl) and (K2) and the assumption that K is Lipschitz,
for all densities f such that ff log(1 + f) < 00 jointly with (S) : u/f(Q(u)) is
slowly varying at zero, we have for all 6 > 0,

(5 .8)

	

lim nEE J °° If,(x) - f(x)I dx) 00 .

PROOF. It follows from (5.7) and the remark that the stability of Xn, n
implies that f°° log(1 + ~x~) f (x) dx < oo, by an application of the following
lemma which is of independent interest .
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LEMMA 6. Let fn, h be kernel density estimate, where K is a nonnegative
N

	

M

Lipschitz kernel satisfying (K 1), h = h(n; X 1 , . . ., Xn ) > 0 is a measurable
function o f n and o f the data and f a density satisfying ff log(1 + f) < oo and
f log(1 + IxI)f (x) dx < oo . Then there exist positive constants A, B depending
on K and f only, and a universal constant C, such that, for all n large enough,

log n 1/2
(5 .9)

	

E Ifn, h(x) _f(x)I) dx >- E(min(Ah 2 , B)) - C	
n

PROOF . We argue as in the proof of Lemma 1, using the same notation . We
have by (2.4),

fIfn - fI >_ SUp(S)ty(S12) - tp(s) ~ > ~1 - ty(di)~ ~~(t) ~ -

	

(t) - ~(t)~
3

for arbitrary t . By the Cauchy-Schwarz inequality, we have

E(I 4 n(t) - ~(t)I) -< n-1/2 E(I eitXl - ~( t)I2)}1/'2 < n -1/2

Let us choose s such that 4(s) I >-
2

. We obtain the inequality

(5 .10)

	

E Ifn - fI >- 2E(I1- (sA))I-n -1/2 .

Let m
i
(resp. Mi ) be the i th moment (resp. absolute moment) of K . By a

truncated Taylor series expansion of e itx we obtain

1 - (t) _ -itm 1 + 2t 2m 2 + y(t),

where Iy(t) I -< 6M3I t 1 3 . From this we see that

(5 .11)

	

I1- p(th)I >- 2(th) 2m 2 - 6Ith13M3 ? 4(th) 2m 2

	

2Ah2

for I thI <- 3m 2/(2M3), while for I thI > 3m 2/(2M3 ), we have

(5.12)

	

I1- p(th)I >-

	

inf

	

I1- (u)I

	

2B .
~ui> 3m2/(2Ma)

By (5.10), (5.11) and (5 .12), we can conclude that

(5 .13)

	

E Ifn - f I >- E(min(Ah 2 , B)) - n-1/2

From the proof of Theorem 9 of Devroye (1988), we retain that, under our
assumptions,

(5 .14)

	

EI fifn - fi

J

-E(fifn-fi) < L•j lon n ~
l/2

1

for all n large enough where C is a universal constant (C> V10240 will do) . A
joint application of (5 .13) and (5 .14) completes the proof of Lemma 6.0

REMARK 2. It is easily verified that (1) the normal distributions have both
extremes in the domain of attraction of a Gumbel distribution and (2) the



MAXIMUM LIKELIHOOD DENSITY ESTIMATE

	

1085

exponential distributions have the upper extreme in the domain of attraction of
a Gumbel distribution . Hence, in Cases 1 and 2 we have (5.8) . Moreover, the
upper tail of an exponential distribution is not stable, so that in this case f1t is
not even L 1-consistent.

REMARK 3. Interestingly, the phenomenon (5.8) described in Theorem 5
occurs also for all densities f with bounded support having at least an extreme
value in the domain of attraction of Gumbel's distribution . Hence, even in this
case, one has to be very cautious in the use of f, .
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