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Introduction

The purpose of this note is to propose and survey efficient algorithms for the exact generation

of various functionals of Brownian motion {B(t), 0 ≤ t ≤ 1}. Many applications require the simulation

of these processes, often under some restrictions. For example, financial stochastic modeling (Duffie

and Glynn, 1995, Calvin, 2001, McLeish, 2002) and the simulation of solutions of stochastic differential

equations (Kloeden and Platen, 1992, Beskos and Roberts, 2005) require fast and efficient methods for

generating Brownian motion restricted in various ways. Exact generation of these processes is impossible

as it would require an infinite effort. But it is possible to exactly sample the process at a finite number of

points that are either fixed beforehand or chosen “on the fly”, in an adaptive manner. Exact simulation

of various quantities related to the processes, like maxima, first passage times, occupation times, areas,

and integrals of functionals, is also feasible. Simulation of the process itself can be achieved by three

general strategies.

(i) Generate the values of B(t) at 0 = t0 < t1 < · · · < tn = 1, where the ti’s are given beforehand.

This is a global attack of the problem.

(ii) Simulation by subdivision. In the popular binary division (or “bridge sampling”) method (see,

e.g., Fox, 1999), one starts with B(0) and B(1), then generates B(1/2), then B(1/4) and B(3/4),

always refining the intervals dyadically. This can be continued until the user is satisfied with the

accuracy. One can imagine other situations in which intervals are selected for sampling based on

some criteria, and the sample locations may not always be deterministic. We call these methods

local. The fundamental problem here is to generate B(λt + (1 − λ)s) for some λ ∈ (0, 1), given

the values B(t) and B(s).

(iii) Generate the values of B(t) sequentially, or by extrapolation. That is, given B(t), generate

B(t + s), and continue forward in this manner. We call this a linear method, or simply, an

extrapolation method.

We briefly review the rather well-known theory for all strategies. Related simulation problems

will also be discussed. For example, in case (ii), given an interval with certain restrictions at the endpoints,

exact simulation of the minimum, maximum, and locations of minima and maxima in the interval becomes

interesting. Among the many possible functionals, maxima and minima stand out, as they provide a

rectangular cover of the sample path B(t), which may of interest in some applications. Brownian motion

may be restricted in various ways, e.g., by being nonnegative (Brownian meander), by staying within an

interval (Brownian motion on an interval), or by attaining a fixed value at t = 1 (Brownian bridge). This

leads to additional simulation challenges that will be discussed in this paper.

We keep three basic principles in mind, just as we did in our book on random variate generation

(Devroye, 1986). First of all, we are only concerned with exact simulation methods, and to achieve this,

we assume that real numbers can be stored on a computer, and that standard algebraic operations, and

standard functions such as the trigonometric, exponential and logarithmic functions, are exact. Secondly,

we assume that we have a source capable of producing an i.i.d. sequence of uniform [0, 1] random variables

U1, U2, U3, . . .. Thirdly, we assume that all standard operations, function evaluations, and accesses to the

uniform random variate generator take one unit of time. Computer scientists refer to this as the ram
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model of computation. Under the latter hypothesis, we wish to achieve uniformly bounded expected

complexity (time) for each of the distributions that we will be presented with. The uniformity is with

respect to the parameters of the distribution. Users will appreciate not having to worry about bad input

parameters. Developing a uniformly fast algorithm is often a challenging and fun exercise. Furthermore,

this aspect has often been neglected in the literature, so we hope that this will make many applications

more efficient.

The paper is divided into logical sections:

§1. Notation

§2. Brownian motion: Survey of global and local strategies

§3. Brownian motion: Extremes and their locations

§4. Brownian meander: Global methods

§5. Brownian meander: Local methods

§6. Brownian meander: Extrapolation

§7. Brownian meander: Extremes

§8. Reflected Brownian motion

§9. Brownian motion on an interval

§10. Notes on the Kolmogorov-Smirnov and theta distributions

§11. References

We blend a quick survey of known results with several new algorithms that we feel are important in

the exact simulation of Brownian motion, and for which we are not aware of uniformly efficient exact

methods. The new algorithms apply, for example, to the joint location and value of the maximum of

a Brownian bridge, the value of a Brownian meander on a given interval when only the values at its

endpoints are given, and the the maximum of a Brownian meander with given endpoint.

This paper is a first in a series of papers dealing with the simulation of Brownian processes,

focusing mainly on the process itself and simple parameters such as the maximum and location of the

maximum in such processes. Further work is needed for the efficient and exact simulation of passage

times, occupation times, areas (like the area of the Brownian excursion, which has the Airy distribution,

for which no exact simulation algorithm has been published to date), the maximum of Bessel bridges and

Bessel processes of all dimensions.
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Notation

We adopt Pitman’s notation (see, e.g., Pitman, 1999) and write

B(t) Brownian motion, B(0) = 0,

Br (t) Brownian bridge: same as B conditional on B(1) = r,

Bbr(t) standard Brownian bridge: same as Br with r = 0 ,

Bme(t) Brownian meander: same as B conditional on B(t) ≥ 0 on [0, 1],

Bme
r (t) restricted Brownian meander: same as Bme conditional on Bme(1) = r,

Bex(t) Brownian excursion: same as Bme
r with r = 0.

Conditioning on zero probability events can be rigorously justified either by weak limits of some lattice

walks or as weak limits of processes conditioned on ε-probability events and letting ε ↓ 0 (see, e.g., Durrett,

Iglehart and Miller (1997), and consult Bertoin and Pitman (1994) or Borodin and Salminen (1996) for

further references). The absolute values of the former three processes, also called reflected Brownian

motion and reflected Brownian bridge will only be briefly mentioned.

The maxima of these processes on [0, 1] are denoted, respectively, by

M,Mr ,M
br,Mme,Mme

r ,M ex.

In what follows, we reserve the notation N,N ′, N ′′, N1, N2, . . . for i.i.d. standard normal ran-

dom variables, E,E′, E′′, E1, E2, . . . for i.i.d. exponential random variables, U,U ′, U ′′, U1, U2, . . . for i.i.d.

uniform [0, 1] random variables, and Ga for a gamma random variable of shape parameter a > 0. All

random variables appearing together in an expression are independent. Thus, U −U = 0 but U −U ′ has

a triangular density. The symbol
L
= denotes equality in distribution. We use φ for the normal density,

and Φ for its distribution function. Convergence in distribution is denoted by
L→. The notation ≡ means

equality in distribution as a process. Also, we use “X ∈ dy” for “X ∈ [y, y + dy]”.

Brownian motion: Survey of global and local strategies

We recall that B(1)
L
= N and that for 0 ≤ t ≤ 1, {B(ts), 0 ≤ t ≤ 1} L= {√sB(t), 0 ≤ t ≤ 1}.

Furthermore, there are many constructions that relate the sample paths of the processes. Most useful is

the definition, which states that for any t0 < t1 < · · · , < tn, we have that

(B(t1)−B(t0), · · · , B(tn)−B(tn−1))
L
=
(√

t1 − t0N1, . . . ,
√
tn − tn−1 Nn

)
.

The simplest representation of Brownian bridges is the drift decomposition of Br : assuming a

bridge on [0, 1] with endpoint r, we have

Br (t) ≡ B(t) + t(r −B(1)), 0 ≤ t ≤ 1.

Thus, given B(ti) at points t0 = 0 < t1 < · · · < tn = 1, we immediately have Br (ti) by the last formula.
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As B(1) is a sum of two independent components, B(t) and B(1)−B(t)
L
= B(1− t), so that for

a fixed t,

Br (t)
L
= tr +

√
t (1− t)N1 + t

√
1− tN2

L
= tr +

√
t(1− t)N.

This permits one to set up a simple local strategy. Given shifted Brownian motion (i.e., Brownian motion

translated by a value a) with values B(0) = a,B(1) = b, then interval splitting can be achieved by the

recipe

B(t) = a+ t(b− a) +
√
t(1− t)N.

Introducing scaling, we have, with B(0) = a,B(T ) = b,

B(t) = a+
t

T
(b− a) +

√
t

T

(
1− t

T

)
N
√
T , 0 ≤ t ≤ T.

All further splitting can be achieved with fresh independent normal random variates. Extrapolation

beyond t for Brownian motion is trivial, as B(t+ s)
L
= B(t) +N

√
s, s > 0.

(1,r)

(X,M)
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Figure 1. Simulation of Brownian motion.

In 1999, Jim Pitman published an important paper on the joint law of the various Brownian

motion processes sampled at the order statistics of a uniform [0, 1] cloud of points. These yield various
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distributional identities but also fast methods of simulation. For the sake of completeness, we briefly

recall his results here. The sampling period is [0, 1]. the order statistics of n i.i.d. uniform [0, 1] random

variables are denoted by

0 = U(0) < U(1) < · · · < U(n) < U(n+1) = 1.

It is well-known that this sample can be obtained from a sequence of i.i.d. exponential random variables

E1, E2, . . . in the following manner, denoting Si = E1 + · · ·+Ei:

U(i) =
Si
Sn+1

, 1 ≤ i ≤ n+ 1.

See, e.g. Shorack and Wellner (1986). Denote by X(t) any of the processes defined at the outset of this

paper, and let it be independent of the uniform sample. Let Ti be a time in [U(i−1), U(i)] when X attains

its infimum on that interval. Consider then the 2n+ 2-dimensional random vector

Xn
def
=
(
X(T1), X(U(1)), X(T2), X(U(2)), . . . , X(Tn+1), X(U(n+1))

)
.

Obtain an independent uniform sample

0 = V(0) < V(1) < · · · < V(n) < V(n+1) = 1,

which is based on an independent collection of exponentials with partial sums S ′i, 1 ≤ i ≤ n + 1, so

V(i) = S′i/S
′
n+1.

Proposition (Pitman, 1999). If X ≡ B and n ≥ 0, then

Xn
L
=
√

2Gn+3/2

(
Si−1 − S′i

Sn+1 + S′n+1

,
Si − S′i

Sn+1 + S′n+1

; 1 ≤ i ≤ n+ 1

)
.

If X ≡ Bme and n ≥ 0, then

Xn
L
=
√

2Gn+1

(
Si−1 − S′i

Sn+1 + S′n+1

,
Si − S′i

Sn+1 + S′n+1

; 1 ≤ i ≤ n+ 1
∣∣ ∩ni=1 [Si > S′i]

)
.

If X ≡ Bbr and n ≥ 0, then

Xn
L
=

√
Gn+1

2

(
U(i−1) − V(i), U(i) − V(i); 1 ≤ i ≤ n+ 1

)
.

If X ≡ Bex and n ≥ 0, then

Xn
L
=

√
Gn+1

2

(
U(i−1) − V(i−1), U(i) − V(i−1); 1 ≤ i ≤ n+ 1

∣∣ ∩ni=1 [U(i) > V(i)]
)
.

If X ≡ Br and n ≥ 0, then

Xn
L
=

√
r2 + 2Gn+1 − |r|

2

(
U(i−1) − V(i), U(i) − V(i); 1 ≤ i ≤ n+ 1

)
+ r

(
U(i−1), U(i); 1 ≤ i ≤ n+ 1

)
.

The random vectors thus described, with one exception, are distributed as a square root of a

gamma random variable multiplied with a random vector that is uniformly distributed on some polytope

of
� 2n+2. Global sampling for all these processes in time O(n) is immediate, provided that one can

generate a gamma random variates Ga in time O(a). Since we need only integer values of a or integer

values plus 1/2, one can achive this by using Gn
L
= E1 + · · ·+En and Gn+1/2

L
= E1 + · · ·+ En +N2/2.
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However, there are also more sophisticated methods that take expected time O(1) (see, e.g., Devroye,

1986).

There are numerous identities that follow from Pitman’s proposition. For example,
(

min
0≤t≤U

Bbr(t), Bbr(U), min
U≤t≤1

Bbr(t)

)
L
=

√
G2

2

(
−U ′, U − U ′, U − 1

)
.

This implies that |Bbr(U)| L=
√
G2/2 |U − U ′| L= U

√
E/2.

In the last statement of Pitman’s result, we replaced a random variable Ln,r (with parameter

r > 0) in section 8 of Pitman by the equivalent random variable
√
r2 + 2Gn+1 − r. It is easy to verify

that it has the density
yn(y + r)(y + 2r)n

n!2n
× exp

(
−y

2

2
− ry

)
, y > 0.

Brownian motion: Extremes and locations of extremes

The marginal distributions of the maximum M and its location X for B on [0, 1] are well-known.

We mention them for completeness (see, e.g., Karatzas and Shreve, 1998): X is arc sine distributed, and

M
L
= |N |.

The arc-sine, or beta (1/2, 1/2) distribution, corresponds to random variables that can be represented

equivalently in all these forms, where C is standard Cauchy:

G1/2

G1/2 +G′
1/2

L
=

N2

N2 +N ′2
L
=

1

1 + C2
L
= sin2(2πU)

L
= sin2(πU)

L
= sin2(πU/2)

L
=

1 + cos(2πU)

2
L
=

1 + cos(πU)

2
.

In simulation, M is rarely needed on its own. It is usually required jointly with other values of

the process. The distribution function of Mr (see Borodin and Salminen (2002, p. 63)) is

F (x) = 1− exp

(
1

2

(
r2 − (2x− r)2

))
, x ≥ max(r, 0).

By the inversion method, this shows that

Mr
L
=

1

2

(
r +

√
r2 + 2E

)
. (1)

This was used by McLeish (2002) in simulations. Therefore, replacing r by N , we have the following joint

law:

(M,B(1))
L
=

(
1

2

(
N +

√
N2 + 2E

)
, N

)
.

Putting r = 0 in (1), we observe that Mbr L=
√
E/2, a result due to Lévy (1939, (20)). It is also

noteworthy that

M
L
= |N | L= M −B(1).
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The rightmost result is simply due to Lévy’s observation (1948) that |B(t)| is equivalent as a process to

M(t)−B(t) where M(t) is the maximum of B over [0, t].

Pitman’s Proposition together with the observation that 2G3/2
L
= N2 + 2E′′, show that

(M,B(1))
L
=
√

2G3/2 ×
(

E

E +E′
,
E −E′
E +E′

)

L
=
√
N2 + 2E′′ ×

(
E

E +E′
,
E −E′
E +E′

)

L
=
(
U
√
N2 + 2E, (2U − 1)

√
N2 + 2E

)
.

Furthermore, Pitman’s results allow us to rediscover Lévy’s result Mbr L=
√
E/2. Using E/(E+E ′) L= U ,

we also have

M
L
= U

√
2G3/2

L
= U

√
N2 + 2E

L
=

1

2

(
N +

√
N2 + 2E

)
.

For x > 0, we define the first passage time (also called hitting time)

Tx = min{t : B(t) = x}.
For t > 0,

� {Tx > t} =
�
{

max
0≤s≤t

B(s) < x

}

=
�
{

max
0≤s≤1

B(s) < x/
√
t

}

=
�
{

1

2

(
N +

√
N2 + 2E

)
< x/

√
t

}

=
�

{(
2x

N +
√
N2 + 2E

)2

> t

}
,

and therefore,

Tx
L
=
( x
M

)2
.

Simulating hitting times and maxima are in fact equivalent computational questions. The same argument

can be used for Brownian meanders: the hitting time of x > 0 for a Brownian meander is distributed as
(

x

Mme

)2

.

Consider now the joint density of the triple (X,M,B(1)). Using (x,m, y) as the running coor-

dinates for (X,M,B(1)), Shepp (1979) [see also Karatzas and Shreve (1998, p. 100)] showed that this

density is
m(m− y)

πx3/2(1− x)3/2
× exp

(
−m

2

2x
− (m− y)2

2(1− x)

)
,m ≥ y ∈ �

, x ∈ (0, 1).

This suggests a simple method for their joint generation:

(X,M,B(1))
L
=

(
X

def
=

1 + cos(2πU)

2
,
√

2XE,
√

2XE −
√

2(1−X)E′
)
.
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This is easily seen by first noting that if (X,M) = (x,m), then B(1)
L
= m−

√
2(1− x)E′. Then, given

X = x, M
L
=
√

2xE.

(1,r)

(X,Mr)
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Figure 2. A simulation of a Brownian bridge from 0 to B(1) = r. X is the location of
the maximum Mr .

—  —



0 1 2 3

0

1

2

3

Figure 3. The density of Mr for various values of r from −1.5 to 1.4 in increments of 0.1. For all
values of r, 0 excepted, there is a discontinuity at max(0, r). At r = 0, we recover the scaled Rayleigh
density 4x exp(−2x2), x > 0.

Finally, we consider the joint law of (X,Mr ) for Br . This is a bit more cumbersome, especially

if we want to simulate it with expected complexity uniformly bounded over all r. The joint density can

be written as

m(m− r)
√

2π er
2/2

πx3/2(1− x)3/2
× exp

(
−m

2

2x
− (m− r)2

2(1− x)

)
, 0 ≤ x ≤ 1,m ≥ max(r, 0).

The standard Brownian bridge: r = 0. The special case of the standard Brownian bridge (r = 0)

has a simple solution. Indeed, the joint density reduces to

2m2

√
2πx3/2(1− x)3/2

× exp

(
− m2

2x(1− x)

)
, 0 ≤ x ≤ 1,m ≥ 0.

Integrating with respect to dm shows that X is uniform on [0, 1]. And given X , we see that M br L=√
2X(1−X)G3/2. Thus,

(
X,Mbr

) L
=
(
U,
√

2U(1− U)G3/2

)
.
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Using Lévy’s result about Mbr, this implies that

√
2U(1− U)G3/2

L
=
√
U(1− U)(N2 + 2E)

L
=

√
E

2
.

The remainder of this section deals with the more complicated case r 6= 0. We will simulate in two

steps by the conditional method. First, the maximumMr is generated as in (1): (1/2)(r+
√
r2 + 2E). Call

this value m for convenience. Then the random variable X is generated, which has density proportional

to

exp

(
−m2

2x −
(m−r)2
2(1−x)

)

x3/2(1− x)3/2
, 0 < x < 1. (2)

For this, we propose a rejection algorithm with rejection constant (the expected number of iterations

before halting, or, equivalently, one over the acceptance probability) R(m, r) depending upon m and r,

uniformly bounded in the following sense:

sup
r

� {R(Mr , r)} <∞. (3)

Note that supr,m≥max(r,0) R(m, r) =∞, but this is of secondary importance. In fact, by insisting only on

(3), we can design a rather simple algorithm. Since we need to refer to it, and because it is fashionable

to do so, we will give this algorithm a name, maxlocation.

algorithm “maxlocation”

Case I (m ≥
√

2)

Repeat Generate U,N. Set Y ← 1 +
(m−r)2
N2

Until U exp(−m2/2) ≤ Y exp(−Y m2/2)

Return X ← 1/Y

Case II (m− r ≥
√

2)

Repeat Generate U,N. Set Y ← 1 + m2

N2

Until U exp(−(m− r)2/2) ≤ Y exp(−Y (m− r)2/2)

Return X ← 1− 1/Y

Case III (m− r ≤
√

2, m ≤
√

2)

Repeat Generate U,N. Set X ← beta (1/2, 1/2)

Until U 4√
X(1−X)e2m2(m−r)2 ≤

exp(−m2/2X−(m−r)2/2(1−X))

(X(1−X))3/2

Return X

No attempt was made to optimize the algorithm with respect to its design parameters like the cut-

off points. Our choices facilitate easy design and analysis. Note also that the three cases in maxlocation

overlap. In overlapping regions, any choice will do. Gou (2009) has another algorithm for this, but it is

not uniformly fast. However, for certain values of the paparmeters, it may beat maxlocation in given

implementations.
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Theorem 1. Algorithm maxlocation generates a random variable X with density proportional to

(2). Furthermore, if m is replaced by Mr = (1/2)(r +
√
r2 + 2E), then (X,Mr ) is distributed as the

joint location and value of the maximum of a Brownian bridge Br . Finally, the complexity is uniformly

bounded over all values of r in the sense of (3).

Proof. The first two cases are symmetric—indeed, X for given input values m, r is distributed as

1 − X ′, where X ′ has input parameters m − r and −r. This follows from considering the Brownian

motion backwards. Case I: Let X have density proportional to (2), and let Y = 1/X . Then Y has

density proportional to

y exp

(
−m

2y

2

)
× (y − 1)−

3
2 exp

(
− (m− r)2y

2(y − 1)

)
, y > 1.

If m ≥
√

2, then the leftmost of the two factors is not larger than exp(−m2/2), while the rightmost factor

is proportional to the density of 1 + (m− r)2/N2, as is readily verified. This confirms the validity of the

rejection method for cases I and II. Case III: note that (2) is bounded by

4√
x(1− x)e2m2(m− r)2

,

which is proportional to the beta (1/2, 1/2) density. To see this, observe that (m2/(2x)) exp(−(m2/(2x))) ≤
1/e, and ((m− r)2/(2(1− x))) exp(−((m− r)2/(2(1− x)))) ≤ 1/e.

Finally, we verify (3) when the supremum is taken over te parameter ranges that correspond to

the three cases. It is helpful to note that m is now random and equal to (1/2)(r +
√
r2 + 2E). Thus,

m(m− r) = E/2, a property that will be very useful. The acceptance rate in case I (using the notation

of the algorithm) is

�
{
U exp(−m2/2) ≤ Y exp(−Y m2/2)

}
=

�
{
Y exp((1− Y )m2/2)

}

=
�
{
Y exp(−m2(m− r)2/2N2)

}

≥ �
{

exp(−m2(m− r)2/2N2)
}

=
�
{

exp(−E2/8N2)
}

def
= δ > 0.

The acceptance rate for case II is dealt with in precisely the same manner—it is also at least δ. Finally,

in case III, the acceptance rate is

�

{
U

4√
X(1−X)e2m2(m− r)2

≤ exp(−m2/2X − (m− r)2/2(1−X))

(X(1−X))3/2

}

=
�
{
e2m2(m− r)2 exp(−m2/2X − (m− r)2/2(1−X))

4X(1−X)

}

≥ �
{
e2m2(m− r)2 exp(−1/X − 1/(1−X))

4X(1−X)

}
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=
�
{
e2E2 exp(−1/X(1−X))

16X(1−X)

}

=
�
{
e2 exp(−1/X(1−X))

8X(1−X)

}

≥ �
{
e2 exp(−16/3)

8(3/16)

�

[X∈[1/4,3/4]]

}

=
1

3e10/3
.

Therefore,
� {R(Mr , r)} ≤ max(1/δ, 3e10/3).

The joint maximum and minimum of Brownian bridge and Brownian motion. The joint

maximum and minimum of Br can be done in two steps. First, we generate Mr = (1/2)(r +
√
r2 + 2E)

and then apply maxlocation to generate the location X of the maximum. Using a decomposition

of Williams (1974) and Denisov (1984), we note that the process cut at X consists of two Brownian

meanders, back to back. More specifically,

Mr −Br (X + t), 0 ≤ t ≤ 1−X,
is a Brownian meander with endpoint Bme(1 − X) = Mr − r. The maximum Z1 of this process is

distributed as √
1−X ×Mme

s with s =
Mr − r√

1−X .

The value Mme
s is generated by our algorithm maxmeander, which will be developed further on in the

paper. Similarly, the process

Mr −Br (X − t), 0 ≤ t ≤ X,
is a Brownian meander with endpoint Bme(X) = Mr . The maximum Z2 of this process is distributed as

√
X ×Mme

s with s =
Mr√
X
.

The value Mme
s is again generated by our algorithm maxmeander. Putting things together, and using

the Markovian nature of Brownian motion, we see that the minimum of Br on [0, 1] is equal to

Mr −max(Z1, Z2).

The joint maximum and minimum for B is dealt with as above, for Br , when we start with r = N .
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Brownian meander: Global methods

Simple computations involving the reflection principle show that the density of B(1) for Brownian

motion started at a > 0 and restricted to remain positive on [0, 1] is

f(x)
def
=

exp

(
− (x−a)2

2

)
− exp

(
− (x+a)2

2

)

√
2π

� {|N | ≤ a} , x > 0.

The limit of this as a ↓ 0 is the Rayleigh density x exp(−x2/2), i.e., the density of
√

2E. An easy scaling

argument then shows that

Bme(t)
L
=
√

2tE.

This permits simulation at a single point, but cannot be used for a sequence of points.

A useful property (see Williams, 1970, or Imhof, 1984) of the Brownian meander permits care-

free simulation: a restricted Brownian meander Bme
r can be represented as a sum of three independent

standard Brownian bridges:

Bme
r (t) ≡

√
(rt+Bbr(t))2 + (Bbr′(t))2 + (Bbr′′(t))2.

This is called the three-dimensional Bessel bridge from 0 to r. We obtain Bme as Bme
r with r =

√
2E.

Bme can also be obtained from the sample path of B directly: let τ = sup{t ∈ [0, 1] : B(t) = 0}. Then

Bme(t) ≡ |B(τ + t(1− τ))|√
1− τ , 0 ≤ t ≤ 1.

This is not very useful for simulating Bme though.

For the standard Brownian bridge, Bbr(t) ≡ B(t)− tB(1). Maintaining three independent copies

of such bridges gives a simple global algorithm for simulating Bme
r at values 0 = t0 < t1 < · · · < tn = 1,

based on the values Bbr(ti).

There is also a way of simulating Bme
r inwards, starting at t = 1, and then obtaining the values

at points 1 = t0 > t1 > t2 > · · · > 0. Using Bbr(t)
L
=
√
t(1− t)N , we have

Bme
r (t)

L
=

√
(rt+

√
t(1− t)N)2 + t(1− t)(N2

2 +N2
3 )

L
=

√
(rt+

√
t(1− t)N)2 + 2Et(1− t)

def
= Z(t, r).

So, we have B(t0) = B(1) = r. Then

B(tn+1)
L
= Z

(
tn+1

tn
, B(tn)

)
, n ≥ 0,

where the different realizations of Z(·, ·) can be generated independently, so that B(tn), n ≥ 0 forms a

Markov chain imploding towards zero.
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Figure 4. Simulation of Brownian meander with end value r.

For Bex , a simple construction by circular rotation of a standard Brownian bridge Bbr is possible

(Vervaat, 1979; Biane, 1986). As noted above, for Bbr on [0, 1], the minimum is located at X
L
= U .

Construct now the new process

Y (t) =

{
Bbr(X + t)−Bbr(X) if 0 ≤ t ≤ 1−X ;

Bbr(X + t− 1)−Bbr(X) if 1−X ≤ t ≤ 1 .

Then Y ≡ Bex on [0, 1]. Furthermore, the process Bex just constructed is independent of X . This

construction permits the easy simulation of Bbr given Bex, by cutting and pasting starting at a randomly

generated uniform [0, 1] position U . But vice versa, the benefits for simulating Bex given Bbr are not so

clear.

Brownian meander: Local methods

The local simulation problem for Brownian meanders can be summarized as follows: given a, b ≥
0, and Bme(0) = a, Bme(1) = b, generate the value of Bme(t) for given t ∈ (0, 1) in expected time

bounded uniformly over a, b, t. Armed with such a tool, we can continue subdividing intervals at unit

expected cost per subdivision. We may need to rescale things. Let us denote by Bme(t; a, b, s) the value

Bme(t) when 0 ≤ t ≤ s, given that Bme(0) = a, Bme(s) = b. Then

Bme(t; a, b, s)
L
=
√
sBme

(
t

s
;
a√
s
,
b√
s
, 1

)
.
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Random variate generation can be tackled by a variant of the global method if one is willing to

store and carry through the values of all three Brownian motions in the three-dimensional Bessel bridge

approach. However, if this is not done, and the boundaries of an interval are fixed, then one must revert

to a truly local method. This section discusses the simulation of Bme(t; a, b, 1) . In the remainder of this

section, we will write Bme(t) instead of Bme(t; a, b, 1).

The (known) density of Bme(t) can be derived quite easily. We repeat the easy computations

because some intermediate results will be used later. Let us start from the well-known representation for

Brownian motion X(t) restricted to X(0) = a,X(1) = b with 0 ≤ a < b:

X(t)
L
= a+B(t) + t(b− a−B(1)), 0 ≤ t ≤ 1.

Writing B(1) = B(t) + B′(1 − t) (B′ being independent of B), and replacing B(t) =
√
tN , B′(1− t) =√

1− tN ′, we have

X(t)
L
= a+ t(b− a) +

√
t (1− t)N −

√
1− t tN ′

L
= a+ t(b− a) +

√
t(1− t)N.

For the Brownian bridge Br on [0, 1], we know that

Mr
L
=

1

2

(
r +

√
r2 + 2E

)
,

and thus, the minimum is distributed as

1

2

(
r −

√
r2 + 2E

)
.

Since X(t) is just a+Br (t) with r = b− a,

�
{

min
0≤t≤1

X(t) ≥ 0

}

=
�
{
a+

1

2

(
b− a−

√
(b− a)2 + 2E

)
≥ 0

}

=
�
{√

(b− a)2 + 2E ≤ a+ b

}

=
�
{

(b− a)2 + 2E ≤ (a+ b)2
}

=
� {E ≤ 2ab}

= 1− exp(−2ab).

For x > 0, assuming ab > 0,

� {Bme(t) ∈ dx}

=
�
{
X(t) ∈ dx

∣∣∣ min
0≤s≤1

X(s) ≥ 0

}

=

� {X(t) ∈ dx,min0≤s≤1 X(s) ≥ 0}
� {min0≤s≤1 X(s) ≥ 0}

=

� {X(t) ∈ dx} � {min0≤s≤t Y (s) ≥ 0} � {mint≤s≤1 Z(s) ≥ 0}
� {min0≤s≤1 X(s) ≥ 0}
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where Y (s) is Brownian motion on [0, t] with endpoint values a, x, and Z(s) is Brownian motion on [t, 1]

with endpoint values x, b. The decomposition into a product in the numerator follows from the Markovian

nature of Brownian motion. Using scaling, we see that

�
{

min
0≤s≤t

Y (s) ≥ 0

}
= 1− exp(−2(a/

√
t)(x/

√
t)) = 1− exp(−2ax/t),

and similarly,
�
{

min
t≤s≤1

Z(s) ≥ 0

}
= 1− exp(−2bx/(1− t)).

Therefore, putting µ = a+ t(b− a),

� {Bme(t) ∈ dx}

=
�
{
a+ t(b− a) +

√
t(1− t)N ∈ dx

}
× (1− exp(−2ax/t)) (1− exp(−2bx/(1− t)))

1− exp(−2ab)
.

The density of Bme(t) is

f(x) = g(x)× h(x),

where, for x > 0,

g(x)
def
=

1√
2πt(1− t)

exp

(
− (x− µ)2

2t(1− t)

)
,

h(x)
def
=





(1−exp(−2ax/t))(1−exp(−2bx/(1−t)))
1−exp(−2ab)

if ab > 0,
x
bt (1− exp(−2bx/(1− t))) if a = 0, b > 0,
x

a(1−t) (1− exp(−2ax/t)) if a > 0, b = 0,

2x2

t(1−t) if a = b = 0,

When a = 0 or b = 0 or both, the density was obtained by a continuity argument. The case a = 0, b > 0

corresponds to Brownian meander started at the origin and ending at b, and the case a = b = 0 is just

Brownian excursion. In the latter case, the density is

2x2
√

2π(t(1− t))3
exp

(
− x2

2t(1− t)

)
, x > 0,

which is the density of √
2t(1− t)G3/2

L
=
√
t(1− t)(N2 + 2E) .

More interestingly, we already noted the 3d representation of Brownian meanders, which gives for a = 0

the recipe

Bme(t)
L
=

√(
bt+

√
t(1− t)N

)2
+ 2Et(1− t),

and, by symmetry, for b = 0,

Bme(t)
L
=

√(
a(1− t) +

√
t(1− t)N

)2
+ 2Et(1− t).

We rediscover the special case a = b = 0. We do not know a simple generalization of these sampling

formulae for ab > 0. In the remainder of this section, we therefore develop a uniformly fast rejection

method for f .
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If ab ≥ 1/2, we have 1− exp(−2ab) ≥ 1− 1/e, and thus

h(x) ≤ e

e− 1
.

Since g is a truncated normal density, the rejection method is particularly simple:

Repeat Generate U,N. Set X ← µ+
√
t(1− t)N

Until X ≥ 0 and Ue/(e− 1) ≤ h(X)

Return X

The expected number of iterations is the integral under the dominating curve, which is e/(e− 1).

Consider now the second case, ab ≤ 1/2. Using the general inequality 1−e−u ≤ u, and 1−e−u ≥
u(1− 1/e) for u ≤ 1, we have

h(x) ≤ e

e− 1
× x

bt
(1− exp(−2bx/(1− t))) ,

where on the right hand side, we recognize the formula for h when a = 0, b > 0 discussed above. Thus,

using the sampling formula for that case , we obtain a simple rejection algorithm with expected number

of iterations again equal to e/(e− 1).

Repeat Generate U,N,E. Set X ←
√(

bt+
√
t(1− t)N

)2
+ 2Et(1− t)

Until e
e−1

UX
bt ≤

1−exp(−2aX/t)
1−exp(−2ab)

Return X

Brownian meander: Extrapolation

Given Bme(t) = a, we are asked to simulate Bme(t+ s). We recall first that Brownian meanders

are translation invariant, i.e., Bme(t; a, b, t′), 0 ≤ t ≤ t′ is equivalent to Bme(t+s; a, b, t′+s), 0 ≤ t ≤ t′ for

all s > 0. Also, it is quickly verified that Bme(t; a, b, t′), 0 ≤ t ≤ t′ is equivalent to Brownian motion on

[0, t′] starting from a and ending at b, conditional on staying positive (if a or b are zero, then limits must

be taken). Finally, scaling is taken care of by noting that given Bme(t) = a, Bme(t+ s) is distributed as√
sBme(t+ 1) started at a/

√
s. These remarks show that we need only be concerned with the simulation

of Brownian motion B(1) on [0, 1], given B(0) = a > 0 and conditional on min0≤t≤1 B(t) > 0. The case

a = 0 reduces to standard Brownian meander Bme(1), which we know is distributed as
√

2E.

As we remarked earlier, simple computations involving the reflection principle show that the

density of B(1) under the above restrictions is

f(x)
def
=

exp

(
− (x−a)2

2

)
− exp

(
− (x+a)2

2

)

√
2π

� {|N | ≤ a} , x > 0.
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The limit of this as a ↓ 0 is x exp(−x2/2), the density of
√

2E. The distribution function is given by

F (x) = 1− Φ(x+ a)− Φ(x − a)

Φ(a)− Φ(−a)
,

where we recall that Φ is the distribution function of N . This is not immediately helpful for random

variate generation. We propose instead the following simple rejection algorithm, which has uniformly

bounded expected time.

(Case a ≥ 1)

Repeat Generate U uniform [0, 1], N standard normal

X ← a+N

Until X > 0 and U ≥ exp(−2aX)

Return X

(Case 0 < a ≤ 1)

Repeat Generate U uniform [0, 1], E exponential

X ←
√

2E/(1− a2/3)

Until 2aUX exp(a2X2/6) ≤ exp(aX) + exp(−aX)

Return X

For a ≥ 1, we apply rejection with as dominating curve the first term in the expression of f , which

is nothing but the normal density with mean a. The acceptance condition is simply U ≥ exp(−2aX),

which we leave as a simple exercise. The probability of rejection is
� {[a+N < 0] ∪ [U ≤ exp(−2a(a+N))]} ≤ � {N > a}+

� {exp(−2a(a+N))}
= 1− Φ(a) + exp(−4a2)

≤ 1− Φ(1) + e−4

< 0.18.

This method applies for all a, but as a ↓ 0, we note with disappointment that the rejection probability

approaches 1. For 0 < a ≤ 1, we rewrite the numerator in f as

exp

(
−x

2

2
− a2

2

)
×
(
eax + e−ax

)
,

and bound

eax + e−ax ≤ 2axe(ax)2/6,

which is easily verified by comparing Taylor series on both sides. This explains the rejection condition.

Furthermore, the dominating curve is proportional to

x exp

(
−x

2(1− a2/3)

2

)
,

which in turn is proportional to the density of
√

2E/(1− a2/3). The probability of acceptance is one

over the integral of the dominating curve, which is

2ae−a
2/2

√
2π

� {|N | ≤ a}(1− a2/3)
≤ 1

1− a2/3
≤ 3

2
.
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Thus, the rejection probability is less than 1/3. Therefore, the expected time taken by the algorithm

above is uniformy bounded over all choices of a.

Brownian meander: Extremes

The maxima related to Bme are slightly more complicated to describe:

� {Mme ≤ x} = 1 + 2
∞∑

k=1

(−1)k exp
(
−k2x2/2

)
, x > 0

(Chung, 1975, 1976; and Durrett and Iglehart (1977)). This is also known as the (scaled) Kolmogorov-

Smirnov limit distribution. For this distribution, fast exact algorithms exist (Devroye, 1981)—more about

this in the last section. Furthermore,

� {M ex ≤ x} = 1 + 2
∞∑

k=1

(1− 4k2x2) exp
(
−2k2x2

)
, x > 0

(Chung, 1975, 1976; and Durrett and Iglehart (1977)). This is also called the theta distribution. For this

too, we have fast exact methods (Devroye, 1997).

The remainder of this section deals with Mme
r . Once we can simulate this, we also have

(Mme, Bme(1)) ≡ (Mme
r , r) with r =

√
2E,

(M ex, Bex(1)) ≡ (Mme
r , r) with r = 0.

The starting point is the following joint law,

� {Mme ≤ x,Bme(1) ≤ y} =
∞∑

k=−∞

[
exp

(
−(2kx)2/2

)
− exp

(
−(2kx+ y)2/2

)]
, x ≥ y ≥ 0,

as obtained by Durrett and Iglehart (1977) and Chung (1976). Straightforward calculations then show

� {Mme ≤ x,Bme(1) ∈ dy} =
∞∑

k=−∞
(2kx+ y) exp

(
−(2kx+ y)2/2

)
dy, x ≥ y ≥ 0.

Because Bme(1) has density y exp(−y2/2), we see that the distribution function of Mme
r is

∞∑

k=−∞

2kx+ r

r
exp

(
r2/2− (2kx+ r)2/2

)
, x ≥ r > 0.

Its density is

f(x)
def
= r−1er

2/2
∞∑

k=−∞
2k
(

1− (2kx+ r)2
)

exp
(
−(2kx+ r)2/2

)
, x ≥ r > 0. (4)

It helps to rewrite the density (4) of Mme
r by grouping the terms:

f(x) =
∞∑

k=1

fk(x)
def
=
∞∑

k=1

2ke−2k2x2
g(r, k, x),
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with

g(r, k, x) =
1

r
×
((

1− (r + 2kx)2
)
e−2kxr −

(
1− (r − 2kx)2

)
e2kxr

)

=
1

r
×
(

(r2 + 4k2x2 − 1) sinh(2kxr)− 4kxr cosh(2kxr)
)
.

0 1 2 3

0

1

2

3

Figure 5. The density of Mme
r for r varying from 0.05 to 1.95 in steps of 0.1. Note the accumulation

at r = 0, which corresponds to M ex (the theta distribution).

The Jacobi theta function

θ(x) =
∞∑

n=−∞
exp

(
−n2πx

)
, x > 0,

has the remarkable property that
√
xθ(x) = θ(1/x), which follows from the Poisson summation formula,

and more particularly from Jacobi’s theta function identity

1√
πx

∞∑

n=−∞
exp

(
− (n+ y)2

x

)
=

∞∑

n=−∞
cos (2πny) exp

(
−n2π2x

)
, y ∈ �

, x > 0.

Taking derivatives with respect to y then shows the identity

1√
πx3

∞∑

n=−∞
(n+ y) exp

(
− (n+ y)2

x

)
=

∞∑

n=−∞
πn sin (2πny) exp

(
−n2π2x

)
, y ∈ �

, x > 0.
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A term by term comparison yields the alternative representation

� {Mme ≤ x,Bme(1) ∈ dy}

= 2x
∞∑

k=−∞

(
k +

y

2x

)
exp

(
−
(
k + y

2x

)2

1/(2x2)

)
dy

= 2x

√
π

8x6

∞∑

n=−∞
πn sin

(
2πn

y

2x

)
exp

(
−n

2π2

2x2

)
dy

=

√
π

2x4

∞∑

n=−∞
πn sin

(
2πn

y

2x

)
exp

(
−n

2π2

2x2

)
dy, x ≥ y ≥ 0.

The distribution function of Mme
r can also be written as

F (x) =
∞∑

n=1

Fn(x) sin
(πnr
x

)
, x ≥ r ≥ 0. (5)

where

Fn(x) =
√

2πx−2r−1er
2/2πn exp

(
−n

2π2

2x2

)
.

This yields the density

f(x) =
∞∑

n=1

F ′n(x) sin (πnr/x)−
∞∑

n=1

Fn(x)(πnr/x2) cos (πnr/x)

=
∞∑

n=1

Fn(x)

((
n2π2 − 2x2

x3

)
sin (πnr/x) −

(πnr
x2

)
cos (πnr/x)

)

def
=
∞∑

n=1

ψn(x).

(6)

Armed with the dual representations (4) and (5), we develop an algorithm called maxmeander.

It is based upon rejection combined with the series method developed by the author in 1981 (see also

Devroye, 1986). The challenge here is to have an expected time uniformly bounded over all choices of r.

For rejection, one should make use of the properties of the family when r approaches its extremes. as

r ↓ 0, the figure above suggests that Mr
L→ M0, and that bounds on the density for M0 should help for

small r. As r → ∞, the distribution “escapes to infinity”. In fact, 2r(Mr − r) L→ E, a fact that follows

from our bounds below. Thus, we should look for exponential tail bounds that hug the density tightly

near x = r. We have two regimes, r ≥ 3/2, and r ≤ 3/2.

Regime I: r ≥ 3/2.

Lemma 1. Assume r ≥ 3/2. For every K ≥ 1, x ≥ r ≥ 3/2,

− 1

1− ζ ×
4K(1 + 4Kxr)

r
× e−2K2x2+2Kxr ≤

∞∑

k=K

fk(x) ≤ 1

1− ξ × 2K(r + 4K2x2/r)× e−2K2x2+2Kxr
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where ξ = 6.8 e−9 and ζ = 2.2 e−9. Next, when r ≤ 3/2, x ≥ 3/2, we have

−8K2xe2Kxr−2K2x2

1− τ ≤
∞∑

k=K

fk(x) ≤ 164

9(1− ν)
K4x3e2Kxr−2K2x2

,

where ν = 16e−9 and τ = 4e−9.

This leads to an algorithm for r ≥ 3/2. Note that for this, we need a bound on f . By Lemma 1,

f(x) ≤ s(x)
def
=

2r2 + 8x2

(1− ξ)r × e
−2x2+2xr

and the upper bound is easily checked to be log-concave for x ≥ r ≥ 3/2. Thus,

s(x) ≤ s(r) exp((log s)′(r)(x − r)), x ≥ r,
and since (log s)′(r) = (8− 10r2)/(5r), we have

f(x) ≤ g(x)
def
=

10r

(1− ξ) × exp

(
−10r2 − 8

5r
(x− r)

)
, x ≥ r.

We have ∫ ∞

r
g(x) dx =

10r × 5r

(1− ξ)(10r2 − 8)

=
5

(1− ξ) (1− 8/(10r2))

≤ 5

(1− ξ) (1− 32/90)

< 7.77.

This suggests that using g as a dominating curve for rejection yields an algorithm that is uniformly fast

when r ≥ 3/2. Also, the function g is proportional to the density of r + cE with c = 5r/(10r2 − 8).

Algorithm maxmeander (for r ≥ 3/2)

Repeat Generate X = r + cE where c = 5r/(10r2 − 8)

Generate V uniformly on [0, 1], and set Y ← V g(X) = 10rV e−E
(1−ξ)

k ← 2, S ← f1(X)

Decision ← ‘‘Undecided’’

Repeat If Y ≤ S − 1
1−ζ ×

4k(1+4kXr)
r × e−2k2X2+2kXr then Decision ← ‘‘Accept’’

If Y ≥ S + 1
1−ξ × 2k(r + 4k2X2/r)× e−2k2X2+2kXr then Decision ← ‘‘Reject’’

S ← S + fk(X)

k ← k + 1

Until Decision 6= ‘‘Undecided’’

Until Decision = ‘‘Accept’’

Return X
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Regime II: r ≤ 3/2. The next Lemma provides approximation inequalities for small values of x, thanks

to the Jacobi-transformed representation (5).

Lemma 2. For every K ≥ 1, x ≤ 3/2, r ≤ 3/2,
∣∣∣∣∣
∞∑

k=K

ψk(x)

∣∣∣∣∣ ≤
1

1− µ FK(x)× K3π3r

x4 ,

where µ = 16 exp
(
−2π2

3

)
= 0.0222 . . ..

Consider first x ≤ 3/2. Rejection can be based on the inequality

f(x) ≤ 1

1− µ F1(x)

(
π3r

x4

)

=

√
2πer

2/2π4

(1− µ)x6
× exp

(
− π2

2x2

)

≤ g(x)
def
=

√
2πe9/8π4

(1− µ)x6
× exp

(
− π2

2x2

)
.

(7)

It is remarkable, but not surprising, that the dominating function does not depend upon r. It is uniformly

valid over the range. We will apply it over
� +. The random variable π/

√
2G5/2 = π/

√
N2 + 2E1 + 2E2

has density √
2ππ4

3x6 exp

(
− π2

2x2

)
, x > 0,

which is g(x)/p with p = 3e9/8/(1− µ). Thus,
∫∞

0 g(x) dx = p, and rejection is universally efficient.

Consider next x ≥ 3/2, a situation covered by the ineqalities of Lemma 1. Here we first need an

upper bound to be able to apply rejection. Once again, an exponential bound is most appropriate. To

see this, not that

f(x) ≤ 164

9(1− ν)
x3e2xr−2x2

, x ≥ 3/2.

The upper bound is log-concave in x, and we can apply the exponential tail technique for log-concave

densities, which yields the further bound

f(x) ≤ g∗(x)
def
= q × (4− 2r)e−(4−2r)(x−3/2), x ≥ 3/2, (8)

where

q
def
=

∫ ∞

3/2
g∗(x) dx =

123× e3r−9/2

2(1− ν)(4− 2r)
.

The function g∗ is proportional to the density of 3/2 +E/(4− 2r). We are thus set up to apply rejection

with a choice of dominating curves, one having weight p for x ≤ 3/2, and one of weight q for x ≥ 3/2.

The algorithm, which has an expected time uniformly bounded over the range r ≤ 3/2 (since p + q is

uniformly bounded) can be summarized as follows:
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Algorithm maxmeander (for r ≤ 3/2)

Set p = 3e9/8

1−µ , q = 123×e3r−9/2

2(1−ν)(4−2r)
.

Repeat Generate U, V uniformly on [0, 1]

If U ≤ p
p+q then X ← π√

N2+2E1+2E2
Y ← V g(X) [g is as in (7)]

k ← 2, S ← ψ1(X)

Decision ← ‘‘Undecided’’

Repeat If X ≥ 3/2 then Decision ← ‘‘Reject’’

Set T ← 1
1−µ Fk(X)× k3π3r

X4

If Y ≤ S − T then Decision ← ‘‘Accept’’

If Y ≥ S + T then Decision ← ‘‘Reject’’

S ← S + ψk(X)

k ← k + 1

Until Decision 6= ‘‘Undecided’’

else X ← 3
2 + E

4−2r

Y ← V g∗(X) [g∗ is as in (8)]

k ← 2, S ← f1(X)

Decision ← ‘‘Undecided’’

Repeat If Y ≤ S − 8k2Xe2kXr−2k2X2

1−τ then Decision ← ‘‘Accept’’

If Y ≥ S + 164
9(1−ν)

k4X3e2kXr−2k2X2
then Decision ← ‘‘Reject’’

S ← S + fk(X)

k ← k + 1

Until Decision 6= ‘‘Undecided’’

Until Decision = ‘‘Accept’’

Return X

Extensions. Using the ideas of this section, it is possible to develop a uniformly fast generator for Mme

when both endpoints are fixed and nonzero: Bme(0) = a and Bme(1) = b. Majumdar, Randon-Furling,

Kearney and Yor (2008) describe the distributions of the locations of maxima in several constrained

Brownian motions, including Brownian meanders. It is also possible to develop uniformly fast exact

simulation algorithms for them.
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Reflected Brownian motion

Reflected Brownian motion with one reflecting barrier at 0 is just |B(t)|. If one is merely inter-

ested in simulating this process at given time epochs, it suffices to simulate B and take absolute values.

Extrapolation beyond t when the value |B(t)| = x is easy too, as

|B(t+ s)| L= |B(t) +
√
sN | L= |r +

√
sN |,

where we used the reflection principle to note that conditioning on |B(t)| = x is equivalent to conditioning

on B(t) = x. Interpolation between |B(t)| = x and |B(t′)| = r for t < s < t′ follows easily after one notes

that |B(s)| has the same distribution when only conditioned on B(t) = x and B(t′) = r, and so this case

reduces to interpolation for B, which we dealt with earlier. The simulation of

max
t<s<t′

|B(s)|

conditional on the values a, b at both endpoints poses no problems either. Consider a Brownian bridge

taking the values a and b at t and t′ respectively. Simulate the joint values of maximum and minimum as

explained earlier (this requires two accesses to a generator for the maximum of a conditional Brownian

meander). Finally, return the maxim of the absolute values of the maximum and minimum.

(1,r)

0 0.25 0.5 0.75 1.0

0

1

Figure 6. Simulation of reflected Brownian motion.

With two reflecting barriers, at 0 and a > 0, and calling the process R(t), simple considerations

show that we have the following folding formula,

R(t)
L
=

{
B(t)− bB(t)/aca if bB(t)/ac is even,

a− (B(t) − bB(t)/aca) if bB(t)/ac is odd.

So, for global simulation, it again suffices to simulate B. It is more interesting to study extrapolation

and interpolation. Extrapolation from R(0) = x ∈ (0, a) is trivial by the Markov property of Brownian

motion: R(t) can be obtained from B(t) by the folding formula if we start with B(0) = x. Interpolation

between R(0) = x ∈ (0, a) and R(1) = y ∈ (0, a) can also be done by the folding formula. First generate

B(t) as in a Brownian bridge between B(0) = x and B(1) = y, and then compute R(t) from B(t) by the

folding formula.
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Brownian motion on an interval

By Brownian motion on an interval [0, a], we mean B conditional on B staying in [0, a]. Define

the event

A(t, t′) =

[
0 ≤ inf

t<s<t′
B(s) ≤ sup

t<s<t′
B(s) ≤ a

]
.

The values at 0 < t1 < · · · < tn can be obtained by consecutive extrapolations, as

(B(0) = x,B(t1), B(t2), . . . , B(tn)) given A(0, tn)

is distributed as the random vector in which B(ti) given B(ti−1) = r is generated independently of the

past up to ti−1, after noting that B(ti) is just like B(ti− ti−1) starting from B(0) = x and conditional on

A(0, ti− ti−1). This follows from the Markovian nature of Brownian motion. The only snake in the grass

is when x ∈ {0, a}, because then the events A(0, s) for s > 0 have zero probability, and one must proceed

by taking limits of approximating events (barriers at −ε and a+ ε, and ε ↓ 0) to obtain a meaningful law.

More about this later.

(1,r)

0 0.25 0.5 0.75 1.0

0

1

Figure 7. Simulation of Brownian motion restricted to the interval [−0.3, 1] and
started at 0.

Simulation can thus be driven be a concatenation of extrapolation steps. In general, we need

to simulate B(t) starting at B(0) = x ∈ (0, a), conditional on A(0, t). Let T0 = inf{s : B(s) = 0}, and

Ta = inf{s : B(s) = a} be the first passage times of the barriers. Karatzas and Shreve (1998, pp. 97–100)

provide the following formula:

� {B(t) ∈ dy,min(T0, Ta) > t}

=
∞∑

n=−∞

(
1√
2πt

exp

(
− (y + 2na− x)2

2t

)
− 1√

2πt
exp

(
− (y + 2na+ x)2

2t

))
dy, 0 < y < a.

The density of B(t) given min(T0, Ta) > t is proportional to the expression above, and is thus a weighted

sum of pieces of the normal density. The n-th positive part corresponds to a normal density centered at

x− 2na with variance t, and restricted to [0, a].
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Let us denote bt B(t, x, a) the process (for t ≥ 0) with parameters 0 < x < a. Note that

B(t, x, a)
L
=
√
t×B(1, x/

√
t, a/
√
t),

so we can without loss of generality assume that t = 1. This leaves a two-parameter family.

While it is easy to give simple algorithms for generating B(1, x, a), it is harder to find one whose

expected time is uniformly bounded over all values of the parameters. This is due to the fact that there

are indeed three regimes. When a and x are both very large (relative to t = 1), the boundaries do not

matter, and we are close to ordinary Brownian motion (B(1, x, a) is close to normal). When x is near

zero, and a is large, only the zero boundary matters, and in fact, the behavior is like that of a Brownian

meander (B(1, x, a) is roughly like
√

2E). Finally, when a is very small, we are restricted to a thin

sausage, and the law of B(1, x, a) is basically independent of the starting point x—in fact, the density of

B(1, x, a) is close to the positive period of the sine function.

This section first develops the theory for 0 < x ≤ a/2. Indeed, since B(1, x, a)
L
= a−B(1, a−x, a),

by symmetry, we do not need to consider a/2 ≤ x ≤ 1. Then by taking limits, we can also handleB(1, 0, a).

0 1 2 3 4 5

0

0.25

0.5

Figure 8. Densities of B(1, x, a) for a = 5 held fixed, and x varied from 0.1 to 4.9 in steps of 0.2.
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Figure 9. Densities of B(1, x, a) when a varies from 0.7 to 5 in steps of 0.1. In all cases, x = a/3. For
small values of a, the density is a one-period sinusoid.

The density of Y
def
= B(1, x, a) is proportional to

f(y) =
∞∑

n=−∞
fn(y)

def
=

∞∑

n=−∞

(
1√
2π

exp

(
− (y + 2na− x)2

2

)
− 1√

2π
exp

(
− (y + 2na+ x)2

2

))
dy, 0 < y < a.

It is clear that f0(y) ≥ 0, that f1(y) > f2(y) > · · · > 0 and that f−1(y) < f−2(y) < · · · < 0. Note also

that these ordered sequences can be interleaved when y ∈ [0, a], 0 ≤ x ≤ a/2, and a ≥ 2:

|f−1(y)| ≥ f1(y) ≥ |f−2(y)| ≥ f2(y) ≥ · · · .

Proof. We will use the monotonicity of the standard normal density φ, and its convexity outside [−1, 1].

Note that fn(y) = φ(y + 2na− x)− φ(y + 2na+ x), and thus that for n > 0, |f−n(y)| ≥ fn(y) if

φ(y + 2na+ x) + φ(y − 2na+ x) ≥ φ(y + 2na− x) + φ(y − 2na− x).

This is equivalent to asking

φ(2na+ y + x) + φ(2na− y − x) ≥ φ(2na+ y − x) + φ(2na− y + x),

which in turn follows from the convexity when 2na − y − x ≥ 1. This is satisfied for all y ∈ [0, a],

0 ≤ x ≤ a/2 and n ≥ 1 if a ≥ 2. Next, we must show that fn(y) ≥ |f−(n+1)(y)| for all n ≥ 1. This follows

from

φ(y + 2na− x)− φ(y + 2na+ x) ≥ φ(y − 2na− 2a+ x) − φ(y − 2na− 2a− x),
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or, equivalently,

φ(2na+ y − x) + φ(2na+ 2a− y + x) ≥ φ(2na+ y + x) + φ(2na+ 2a− y − x),

which again follows by convexity and since 2na+ y − x ≥ 3a/2 ≥ 3 for a ≥ 2.

The remainder of this section has three parts. First, we develop a uniformly fast generator for

f0, valid for all values of a and all 0 < x ≤ a/2. Then we develop a uniformly fast generator for f when

a ≥ 2. Finally, the case a < 2 is dealt with using a different uniformly fast generator.

Uniformly fast simulation of f0.

Recall √
2πf0(y) = exp

(
− (y − x)2

2

)
− exp

(
− (y + x)2

2

)
, 0 < y < a.

This is not a density, as a normalization factor is missing. By expanding the exponents, and using

exp(−z) ≥ 1− z, z > 0, it is easy to see that

√
2πf0(y) ≤ 2xy exp

(
− (y − x)2

2

)
, 0 < y < a.

To get a uniformly fast method in both parameters, a and 0 ≤ x ≤ a/2, we consider three regions: region

I (a ≤ 1), region II (x ≥ 1), and region III (xle1, x ≤ a/2, a ≥ 1), which is the trickiest.

In region I, we use √
2πf0(y) ≤ 2xy, 0 < y < a.

A random variate with density proportional to the upper bound can be drawn as a
√
U , and rejection is

simple:

(Generator for f0. Efficient for a ≤ 1 (region I).)

Repeat Generate U, V uniformly on [0, 1]

X ← a
√
U

Until V × 2xX ≤ exp

(
− (X−x)2

2

)
− exp

(
− (X+x)2

2

)

Return X

Consider region II, a/2 ≥ x ≥ 1. Here we use the trivial (and most obvious) bound

f0(y) ≤ φ(y − x), y ∈ �
.

The rejection algorithm, which uses the fact that

exp

(
(y − x)2

2
− (y + x)2

2

)
= exp (−2yx) ,

can be written as follows:
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(Generator for f0. Efficient in region II: a/2 ≥ x ≥ 1.)

Repeat Generate V uniformly on [0, 1]

X ← x+N

Until V ≥ exp (−2Xx) and X ∈ [0, a]

Return X

Since V
L
= exp(−E), we can describe the acceptance condition equivalently as

E ≤ 2Xx = 2x(x+N).

So, the algorithm keeps generating independent pairs (E,N) until for the first time E/(2x) ≤ x+N ≤ a,

and then returns X = x+N .

In region III, we use

√
2πf0(y) ≤ g(y)

def
= 2x(y − x)+ exp

(
− (y − x)2

2

)
+ 2x2 exp

(
− (y − x)2

2

)
, y ∈ �

.

The leftmost of these functions is the density of x+
√

2E times a factor x. The rightmost is the density of

x+N times a factor 2x2
√

2π. The factors determine the relative weights of these densities in the mixture

g. Thus, the rejection method can be used for f0:

(Generator for f0. Efficient in region III (xle1, x ≤ a/2, a ≥ 1))

Repeat Generate U, V uniformly on [0, 1]

If U(2x+ x2
√

8π) ≤ 2x

then X ← x+
√

2E

else X ← x+N

Y ← V g(X)

Until Y ≤ exp

(
− (X−x)2

2

)
− exp

(
− (X+x)2

2

)
and X ∈ [0, a]

Return X

Lemma 3. Each of the three algorithms takes expected time uniformly bounded over all parameters in

its region. [Proof in the Appendix.]
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Generator for f when a ≥ 2.

The converging alternating series expression for f implies that for any N ≥ 0,
∑

|i|≤N
fi(y) + f−(N+1) ≤ f(y) ≤

∑

|i|≤N
fi(y) ≤ f0(y).

Both upper and lower bound converge monotonically to f at all y ∈ [0, a]. Therefore, the following

alternating series method is valid.

(It is assumed that a ≥ 2, x ≤ a/2.)
Repeat Generate X with density proportional to f0 on [0, a]

Generate V uniformly on [0, 1], and set Y ← V f0(X)

n← 1, S ← f0(X)

Decision ← ‘‘Undecided’’

Repeat S ← S + f−n(X)

If Y ≤ S then Decision ← ‘‘Accept’’

S ← S + fn(X)

If Y ≥ S then Decision ← ‘‘Reject’’

n← n+ 1

Until Decision 6= ‘‘Undecided’’

Until Decision = ‘‘Accept’’

Return X

Lemma 4. The algorithm above takes expected time uniformly bounded over a ≥ 2, x ≤ a/2. [Proof in the Appendix.]
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Generator for f when a ≤ 2. For 0 < x ≤ a/2, a ≤ 2. we propose a uniform bound on [0, 1]. In this

range, the target time (1) is far, relative to the width of the interval, and one expects that the density of

B(1, x, a) is probably best bounded by a uniform law. By Jacobi’s identity,

∞∑

n=−∞

1√
2π

exp

(
− (y + 2na− x)2

2

)
=

1

2a

∞∑

n=−∞
cos

(
πn(y − x)

a

)
exp

(
−n

2π2

2a2

)
.

A similar identity holds with x replaced by −x. Thus, the density of X = B(1, x, a) can be written as

1/
� {min(T0, Ta) > 1} times f(y) where

f(y)
def
=

1

2a

∞∑

n=−∞

(
cos

(
πn(y − x)

a

)
− cos

(
πn(y + x)

a

))
exp

(
−n

2π2

2a2

)

=
1

a

∞∑

n=−∞
sin
(πny

a

)
sin
(πnx

a

)
exp

(
−n

2π2

2a2

)

=
2

a

∞∑

n=1

sin
(πny

a

)
sin
(πnx

a

)
exp

(
−n

2π2

2a2

)

def
=
∞∑

n=1

fn(y).

First we provide an upper bound which will be appropriate for the two-parameter range. Using | sin θ| ≤
|θ|, we see that

f(y) ≤
∞∑

n=1

2n2π2xy

a3
exp

(
−n

2π2

2a2

)
.

The ratio of the (n+ 1)-st term to the n-th term in this sum is
(

1 +
1

n

)2

exp

(
− (2n+ 1)π2

2a2

)
≤ 4e−3π2/8 def

= ρ < 1.

Thus, we have a further bound

f(y) ≤ g(y)
def
=

2π2xy

a3(1− ρ)
exp

(
− π2

2a2

)
, 0 ≤ y ≤ a.

Function g is proportional to the density of a
√
U . Also note that the tail sums in the definition of f are

easily bounded as well;
∣∣∣∣∣
2

a

∞∑

n=N

sin
(πny

a

)
sin
(πnx

a

)
exp

(
−n

2π2

2a2

)∣∣∣∣∣ ≤
∞∑

n=N

2n2π2xy

a3
exp

(
−n

2π2

2a2

)

≤ hN (y)

def
=

2N2π2xy

a3(1− ρ)
exp

(
−N

2π2

2a2

)
.

Since for every N ≥ 1, ∣∣∣∣∣f(y)−
N∑

n=1

fn(y)

∣∣∣∣∣ ≤ hN+1(y),

we can use the following series method.
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(It is assumed that a ≤ 2, x ≤ a/2.)
Repeat Generate X ← a

√
U

Generate V uniformly on [0, 1], and set Y ← V g(X)

n← 1, S ← 0

Decision ← ‘‘Undecided’’

Repeat S ← S + fn(X)

If Y ≤ S − hn+1(X) then Decision ← ‘‘Accept’’

If Y ≥ S + hn+1(X) then Decision ← ‘‘Reject’’

n← n+ 1

Until Decision 6= ‘‘Undecided’’

Until Decision = ‘‘Accept’’

Return X

Lemma 5. The algorithm above takes expected time uniformly bounded over its region, a ≤ 2, x ≤ a/2.

[Proof in the Appendix.]

This concludes the development of uniformly fast extrapolation algorithm for B(1, x, a), 0 < x <

a.

Special case: starting at x = 0. We will briefly comment on Y0
def
= B(1, 0, a). By taking limits, we

see that the density of Y0 is proportional to

∞∑

n=−∞
(y + 2na) exp

(
− (y + 2na)2

2

)
, 0 ≤ y ≤ a.

Special case: Brownian meander. A second special case occurs when a = ∞, which corresponds

to Brownian meander started at x, B(1, x,∞). The density is easily seen to be

exp

(
− (y−x)2

2

)
− exp

(
− (y+x)2

2

)

√
2π

� {|N | ≤ x} ,

when x > 0, and by taking limits, the density of B(1, 0,∞) is

ye−y
2/2, y > 0,

which is the well-known density of Bme(1)
L
=
√

2E. The former density was called f0 earlier on in this

section, where two different algorithms were given, depending upon whether x is less than or more than

one.
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Interpolation for Brownian motion on an interval. Interpolation is quadratically more com-

plicated, and will not be dealt with here for fear of making this tedious paper even more unreadable.

The fundamental problem, after having rescaled things, is to generate B(t, x, a) for fixed 0 < t < 1 given

B(1, x, a) = z. We could denote such a four-parameter random variable by B(1, t, x, z, a).

Let f(y;x, a) denote the density of B(1, x, a) at the point y. By the Markov property, and

by flipping the time scale of Brownian motion in the second part, it is easy to see that the density of

B(1, t, x, z, a) is proportional to the product of the densities of B(t, x, a) and B(1− t, z, a), i.e., to

f(y/
√
t, x/
√
t, a/
√
t)× f(y/

√
1− t, x/

√
1− t, a/

√
1− t), 0 < y < a.

We have seen that there were three rather different regimes to deal with each one of these f ’s. Depending

upon the situation, that leads to at least nine different possible combinations, not taking into account

that x ≤ a/2 and y ≥ a/2 can be of different polarity. In fact, eliminating all obvious symmetries, there

are twelve different combined regimes. A thorough treatment of this case deserves a separate study. It

should be noted though that most of this has already been done. We can use as dominating curves the

products of the simple dominating curves used by us, which were gaussian, or Maxwell, or constant).

Furthermore, the converging series approximations can now be used in product form without further

technical hurdles.

Interpolation for boundary-restricted Brownian meander. One case is of special interest,

namely when a =∞, the Brownian meander, restricted on both sides.
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Notes on the Kolmogorov-Smirnov and theta distributions

density of maximum of Brownian motion

density of maximum of Brownian excursion

density of maximum of Brownian meander

density of maximum of Brownian bridge to 0
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Figure 10. The four main densities dealt with in this paper. M has the half-normal density. M ex has
the theta distribution. Mme is distributed as 2K, where K has the Kolmogorov-Smirnov law. Finally,

Mbr L=
√
E/2 has the Rayleigh density.

The Kolmogorov-Smirnov statistic has the limit distribution function

F (x) =
∞∑

n=−∞
(−1)ne−2n2x2

, x > 0

(Kolmogorov, 1933). We call this the Kolmogorov-Smirnov distribution and denote its random variable

by K. It is known that

2K
L
= Mme.

Exact random variate generation for the Kolmogorov-Smirnov law was first proposed by Devroye (1981),

who used the so-called alternating series method, which is an extension of von Neumann’s rejection

method. This method is useful whenever densities can be written as infinite sums,

f(x) =
∞∑

n=0

(−1)nan(x),
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where an(x) ≥ 0 and for fixed x, an(x) is eventually decreasing in n. Jacobi functions are prime examples

of such functions. In the present paper, we proposed an algorithm for Mme
r that is uniformly fast over

all r, and is thus more general. Replacing r by
√
E/2 yields a method for simulating 2K.

We say that T is theta distributed if it has distribution function

G(x) =
∞∑

n=−∞

(
1− 2n2x2

)
e−n

2x2
, x > 0.

We warn that some authors use a different scaling: we call a random variable with distribution function

G a theta random variable, and denote it by T . It appears as the limit law of the height of random

conditional Galton-Watson trees (see, e.g., Rényi and Szekeres, 1967, de Bruijn, Knuth and Rice, 1972,

Chung, 1975, Kennedy, 1975, Meir and Moon, 1978, and Flajolet and Odlyzko, 1982). Furthermore,

T√
2

L
= M ex

(see, e.g., Pitman and Yor, 2001). Devroye (1997) published an exact algorithm for T that uses the

principle of a converging series representation for the density. The algorithm presented in this paper for

Mme
r with r = 0 can also be used.

Both T and K are thus directly related to the maxima dealt with in this paper. But they are

connected in a number of other ways that are of independent interest. To describe the relationships, we

introduce the random variables J and J∗ where the symbol J refers to Jacobi. The density of J is

f(x) =
d

dx

∞∑

n=−∞
(−1)n exp

(
−n

2π2x

2

)
=
∞∑

n=1

(−1)n+1n2π2 exp

(
−n

2π2x

2

)
.

The density of J∗ is

f∗(x) = π

∞∑

n=0

(−1)n
(
n+

1

2

)
exp

(
− (n+ 1/2)2π2x

2

)
.

We note that all moments are finite, and are expressible in terms of the Riemann zeta function. The

properties of these laws are carefully laid out by Biane, Pitman and Yor (2001). Their Laplace transforms

are given by
�
{
e−λJ

}
=

√
2λ

sinh
(√

2λ
) ,

�
{
e−λJ

∗}
=

1

cosh
(√

2λ
) .

Using Euler’s formulae

sinh z = z
∞∏

n=1

(
1 +

z2

n2π2

)
, cosh z =

∞∏

n=1

(
1 +

z2

(n− 1/2)2π2

)
,

it is easy to see that J and J∗ are indeed positive random variables, and that they have the following

representation in terms of i.i.d. standard exponential random variables E1, E2, . . .:

J
L
=

2

π2

∞∑

n=1

En
n2

, J∗ L=
2

π2

∞∑

n=1

En
(n− 1/2)2

.

It is known that J∗ is the first passage time of Brownian motion started at the origin for absolute value

1, and J is similarly defined for the Bessel process of dimension 3 (which is the square root of the sum
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of the squares of three independent Brownian motions). See, e.g., Yor (1992, 1997). An exact algorithm

for J∗ is given by Devroye (2009).

Watson (1961) first observed that K
L
= (π/2)

√
J , and so we have

Mme L= π
√
J
L
= 2K.

In addition, Mme is distributed as twice the maximum absolute value of a Brownian bridge on [0, 1]

(Durrett, Iglehart and Miller, 1977; Kennedy, 1976; Biane and Yor, 1987; Borodin and Salminen, 2002).

Let us write K(1),K(2), . . . for a sequence of i.i.d. copies of a Kolmogorov-Smirnov random

variable K. As noted by Biane, Pitman and Yor (2001), the distribution function of the sum J(1) + J(2)

of two independent copies of J is given by

∞∑

n=−∞

(
1− n2π2x

)
e−n

2π2x/2, x > 0.

Thus, we have the distributional identity

π2

2
(J(1) + J(2))

L
= T 2.

Using J
L
= (4/π2)K2, we deduce

T
L
=
√

2(K(1)2 +K(2)2).

This provides a route to the simulation of T via a generator for K.

It is also noteworthy that

J
L
=
J(1) + J(2)

(1 + U)2

where U is uniform [0, 1] and independent of the J(i)’s (Biane, Pitman and Yor (2001, section 3.3)). Thus

we have the further identities

J
L
=

2T 2

π2(1 + U)2
L
=

4K2

π2
.

Finally,

K
L
=

T

(1 + U)
√

2
.

Further properties of K and of maxima of Bessel bridges are given by Pitman and Yor (1999).
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Appendix

Proof of Lemma 1. We deal with r ≥ 3/2 first/. Clearly, using x ≥ r,
g(r, k, x) ≤ (r + 4k2x2/r) exp(2kxr).

Define

h(r, k, x) = 2k(r + 4k2x2/r)× e−2k2x2+2kxr.

Also,

g(r, k, x) ≥ −(2/r) (1 + 4kxr) exp(2kxr).

Define

h∗(r, k, x) =
4k(1 + 4kxr)

r
× e−2k2x2+2kxr.

We have

−h∗(r, k, x) ≤ fk(x) ≤ h(r, k, x).

For k ≥ K ≥ 1,

h(r, k + 1, x)

h(r, k, x)
= (1 + 1/k)

1 + 4(k + 1)2(x/r)2

1 + 4k2(x/r)2 × e−(4k+2)x2+2xr

≤ 2× 1 + 16

1 + 4
× e−6x2+2xr

≤ 34

5
× e−4x2 ≤ 34

5
× e−4r2 ≤ 34e−9

5
def
= ξ.

Therefore,

∞∑

k=K

fk(x) ≤
∞∑

k=K

h(r, k, x)

≤ 1

1− ξ × h(r,K, x)

=
1

1− ξ × 2K(r + 4K2x2/r)× e−2K2x2+2Kxr.

Reasoning in a similar way,

h∗(r, k + 1, x)

h∗(r, k, x)
=

(
1 +

1

k

)
×
(

1 +
4xr

1 + 4kxr

)
× e−(4k+2)x2+2xr

≤ 2

(
2 + 4r2

1 + 4r2

)
× e−6x2+2xr

≤ 2× 11

10
e−4x2

≤ 2.2 e−4r2 ≤ 2.2 e−9 def
= ζ.
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Therefore,

∞∑

k=K

fk(x) ≥ −
∞∑

k=K

h∗(r, k, x)

≥ − 1

1− ζ × h
∗(r,K, x)

≥ − 1

1− ζ ×
4K(1 + 4Kxr)

r
× e−2K2x2+2Kxr.

Consider next the case r ≤ 3/2 but x ≥ 3/2. Observe that in this range, r2 + 4k2x2 − 1 ∈
[8, 5/4 + 4k2x2] ⊆ [8, (41/9)k2x2]. Also, for θ ≥ 0, sinh θ ∈ [θ, θeθ]. Thus,

−rk(x)
def
= −8k2xe2kxr−2k2x2 ≤ fk(x) ≤ 4× 41

9
k4x3e2kxr−2k2x2 def

= Rk(x).

For k ≥ 1,

Rk+1(x)

Rk(x)
= (1 + 1/k)4e2xr−2(2k+1)x2 ≤ 16e2xr−6x2 ≤ 16e3r−27/2 ≤ 16e−9 def

= ν.

Thus,
∑
k≥K fk(x) ≤ RK(x)/(1− ν) for all K ≥ 1. Similarly,

rk+1(x)

rk(x)
= (1 + 1/k)2e2xr−2(2k+1)x2 ≤ 4e−9 def

= τ.

Thus,
∑
k≥K fk(x) ≥ −rK(x)/(1− τ) for all K ≥ 1.

Proof of Lemma 2.

For the first part, assume x ≤ 3/2, and let ψk and Fk be as defined in (6). For x ≤ π/
√

2 (which

is ≥ ∆), using | sinx| ≤ |x|, and, for α, β, θ ≥ 0, |α sin θ − β cos θ| ≤ αθ + β,

ψk(x) ≤ Fk(x)

(
k3π3r

x4
− πkr

x2

)

≤ Fk(x)

(
k3π3r

x4

)

def
= Hk(x),

and ψk(x) ≥ −Hk(x). For k ≥ 1,

Hk+1(x)

Hk(x)
= (1 + 1/k)4 exp

(
− (2k + 1)π2

2x2

)
≤ 16 exp

(
−3π2

2x2

)
≤ 16 exp

(
−2π2

3

)
def
= µ.

We conclude that ∞∑

k=K

ψk(x) ≤
∞∑

k=K

Hk(x) ≤ 1

1− µHK(x).

Similarly, on the bottom side,

∞∑

k=K

ψk(x) ≥ −
∞∑

k=K

Hk(x) ≥ − 1

1− µHK(x).

Proof of Lemma 3.

—  —



We will repeatedly use the fact that in a rejection method, the expected number of iterations is

not more than the integral of the dominating curve divided by
∫ a

0

√
2πf0(y) dy =

√
2π (

� {N ∈ [−x, x]} − � {N ∈ [a− x, a+ x]}) ≥
√

2π (2xφ(x) + x(φ(0) − φ(x)) − 2xφ(a− x)) ,

where the last inequality is only true for x ≤ 1, as it uses the concavity of φ on [−1, 1].

For region I, the area under the dominating curve is xa2. The expected number of iterations is

not more than

xa2

√
2π (2xφ(x) + x(φ(0)− φ(x)) − 2xφ(a− x))

=
a2

√
2π (2φ(x) + (φ(0)− φ(x)) − 2φ(a− x))

≤ a2

√
2π (φ(0) + φ(x) − 2φ(a− x))

=
a2

(1 + exp(−x2/2)− 2 exp(−(a− x)2/2))

≤ a2

(1− exp(−(a− x)2/2))

≤ a2

(a−x)2

2 e−1/2

(by using Taylor’s series with remainder)

≤ a2

a2

8
√
e

= 8
√
e.

Region II: Using the convexity in the tails of φ, the expected number of iterations is
� {N ∈ [−x, x]}

� {N ∈ [−x, x]} − � {N ∈ [a− x, a+ x]}

≤
� {N ∈ [−x, x]}

� {N ∈ [−x, x]} − � {N ≥ a− x}

≤
� {N ∈ [−x, x]}

� {N ∈ [−x, x]} − � {N ≥ x}

≤
� {|N | ≤ 1}

� {|N | ≤ 1} − � {N ≥ 1}

=
2Φ(1)− 1

3Φ(1)− 2

Again, the bound is uniformly valid over the region.

For region III, note that ∫
�
g(y) dy = 2x+ 2x2

√
2π.
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The expected number of iterations is not more than

2x+ 2x2
√

2π√
2π (2xφ(x) + x(φ(0) − φ(x)) − 2xφ(a− x))

≤ 2 + 2x
√

2π√
2π (φ(0) + φ(x) − 2φ(a− x))

≤ 2 + 2x
√

2π√
2π (φ(0)− φ(a− x))

≤ 2 + 2x
√

2π√
2π (φ(0)− φ(a/2))

≤ 2 + 2
√

2π√
2π (φ(0)− φ(1/2))

=
2 + 2

√
2π

1− e−1/8
.

Proof of Lemma 4.

Taking the normalization constant into account, The expected number of iterations of this simple

algorithm is ∫ a
0 f0(y) dy∫ a
0 f(y) dy

≤
∫ a

0 f0(y) dy∫ a
0 (f0(y) + f−1(y)) dy

.

It is easy to check that
∫ a

0
f0(y) dy =

� {N ∈ [−x, a− x]} − � {N ∈ [x, a+ x]} =
� {N ∈ [−x, x]} − � {N ∈ [a− x, a+ x]}.

Similarly,
∫ a

0
f−1(y) dy =

� {N+2a ∈ [−x, a−x]}− � {N+2a ∈ [x, a+x]} =
� {N ∈ [−2a−x,−2a+x]}− � {N ∈ [−a−x,−a+x]}.

By monotonicity over the parameter range of interest,
� {N ∈ [a− x, a+ x]} ≤ xφ(a) + xφ(a− x). Thus,

∫ a
0 f0(y) dy∫ a

0 (f0(y) + f−1(y)) dy

=

� {N ∈ [−x, x]}
� {N ∈ [−x, x]}+

� {N ∈ [2a− x, 2a+ x]} − 2
� {N ∈ [a− x, a+ x]}

≤
� {N ∈ [−x, x]}

� {N ∈ [−x, x]} − 2xφ(a − x)− 2xφ(a)

≤
� {N ∈ [−x, x]}

� {N ∈ [−x, x]} − 2xφ(a/2)− 2xφ(a)

≤
� {N ∈ [−a/2, a/2]}

� {N ∈ [−a/2, a/2]}− aφ(a/2)− aφ(a)

≤
� {|N | ≤ 1}

� {|N | ≤ 1} − 2φ(1)− 2φ(2)
def
= ρ∗.

This uniform bound ρ∗ is valid for the entire parameter region a ≥ 2, x ≤ a/2.

—  —



Proof of Lemma 5. The expected number of iterations is given by
∫ a

0 g(y) dy∫ a
0 f(y) dy

.

Verify that ∫ a

0
g(y) dy =

π2x

a(1− ρ)
exp

(
− π2

2a2

)
.

Also, using sin θ ≥ (2/π)θ, 0 ≤ θ ≤ π/2, and the fact that
∫ a

0 fn(y) dy = 0 for even values of n,
∫ a

0
f(y) dy ≥

∫ a

0
f1(y) dy −

∫ a

0
h3(y) dy

=

∫ a

0
f1(y) dy −

∫ a

0
h3(y) dy

=
4

π
sin
(πx
a

)
exp

(
− π2

2a2

)
− 9π2x

a(1− ρ)
exp

(
−9π2

2a2

)

≥ 8x

πa
exp

(
− π2

2a2

)
− 9π2x

a(1− ρ)
exp

(
−9π2

2a2

)
.

The ratio we seek is thus at most

π2

8(1−ρ)
π − 9π2 exp

(
−8π2

2a2

) =
π3

8(1− ρ)− 9π3 exp
(
−4π2

a2

)

≤ π3

8(1− ρ)− 9π3 exp (−π2)

def
= χ <∞.
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