Chapter Eleven
MULTIVARIATE DISTRIBUTIONS

1. GENERAL PRINCIPLES.

1.1. Introduction.

In sectlon V.4, we have discussed in great detall how one can efficlently gen-
erate random vectors In R?¢ with radially symmetric distributions. Included In
that sectlon were methods for generating random vectors uniformly distributed In
and on the unit sphere Cy of R ¢. For example, when N,, ..., N, are 1id nor-
mal random varlables, then ' :

N, N,

(.._.. —

NN

where N=+/N 2+ - - 4+N,;?% 1s unlformly distributed on the surface of C,.
This uniform distribution is the bullding block for all radlally symmetric distribu-
tlons because these distributions are all scale mixtures of the uniform distribution
on the surface of C,;. This sort of technique Is called a speclal property tech-
nique: It explolts certaln characteristics of the distribution. What we would like
to do here Is give several methods of attacking the generation problem for d-
dimenslonal random vectors, including many speclal property techniques.

The material has little global structure. Most sectlons can In fact be read
Independently of the other sectlons. In this Introductory sectlon several general
princliples are described, Including the conditional distributlon method. There is
no analog to the univarlate Inversion method. Later sectlons deal with speclfic
subclasses of distributions, such as unliform distributions on compact sets, ellipti-
cally symmetric distributions (Including the multivariate normal distribution),
blvarlate unlform distributions and distributions on lines.
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1.2. The conditional distribution method.

The condlitlonal -distribution method allows us to reduce the multivariate
generation problem to d unlvarlate generation problems, but It can only be used
when qulte a bit of Information Is known about the distributlion.

Assume that our random vector X has denslty
f(xp--';xd)=f1($1)f2(x2|x1)‘"fd(xd |1‘1,...,$d_1),

where the f;’'s are conditlonal densltles. Generatlon can proceed as follows:

Conditional distribution method

FOR ¢:=1 TO d DO

Generate X; with density f;(. | X,, ..., X;_)) . (For i =1, use f l(v.).)
RETURN X=(X,, ..., X;3)

It s necessary to know all the condltlonal densltles. This Is equlvalent to knowing
all marginal dlstributlons, because

ff(xl,...,x,-)

f"f—l(xl) A xi—l)

fi(xi lxlx"'xxi—l)=

where f# Is the marginal density of the first 1 components, l.e. the density of
(Xl' e e I‘Xl.)'

Example 1.1. The multivariate Cauchy distribution.
The multlvariate Cauchy density f Is glven by

f(z)= ‘ :

d+1
a+]lz[% ®

where ¢ ==T'(

d ;_1 )/m@+1/2 Here | | .| | Is the standard [, Euclldean norm. It

Is known that X ; Is unlvarlate Cauchy, and that glven X,, .. ., X;_,, the ran-
1-1
dem varlable X; s distributed as T (1+ 33 X; )/V/i where T has the t distribu-

j=1
tlon with ¢ degrees of freedom (Johnson and Kotz, 1970). ||
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Example 1.2. The normal distribution.

Assume that f 1s the density of the zero mean normal distribution on R ?,
with varlance-covarlance matrix A=={aq;; } where a;; =FE (X, X; ):

1 41
Ja)= =P ?
2nv | A

In this case, the condltional density method ylelds the following algorithm:

Conditional density method for normal random variates

Generate N,,N,, iid normal random variates.

X +—N,\ay,

2
aa Q200102
X=X ,+N; J 2z
a G4y

RETURN (X,,.X;)

This follows by noting that X, Is zero mean normal with varlance a,,, and com-
puting the conditional density of X, given X, as a ratlo of marglnal densitles. B

Example 1.3.

Let f be the uniform density In the unlt circle C', of R?2. The conditional
denslty method Is easlly obtalned:

Generate X, with density f ,(z) = 2 iz? (|2 | <1).
™

Generate X, uniformly on [-/1-X,%,v/1-X,7.

RETURN (X,.X,) I
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In all three examples, we could have used alternative methods. Examples 1.1
and 1.2 deal with ea.slly treated radlally symmetric distributions, and Example
1.3 could have been handled via the ordinary rejection method.

1.3. The rejection method.

It should be clear that the rejectlon method 1s not tled to a particular space.
It can be used in multlvarlate random varlate generation problems, and 1s prob-
ably the most useful general purpose technique here. A few traps to watch out for
are worth mentloning. First of all, relJectlon from a uniform density on a rectan-
gle of R often leads to a rejection constant which deterlorates quickly as d
Increases. A case In point Is the rejection method for generating polnts uniformly
in the unlt sphere of R ¢ (see sectlon V.4.3). Secondly, unllke In R, upper
bounds for certaln densitles are not easlly obtalnable. For example, the Informa-
tlon that f Is unimodal with a mode at the orlgin Is of 1lttle use, whereas In R,
the same Information allows us to conclude that f (¢)<1/ |z |. Simllarly, com-
bining unimodallty with moment conditions Is not enough. Even the fact that f
Is log-concave 1s not sufflclent to derlve unlversally applicable upper bounds (see
section VIL2).

In general, the design of an efflclent rejection method is more difficult than
In the unlvarlate case.

1.4, The composition method.

The compositlon method Is not tled to a particular space such as R A
popular technique for obtalning dependence from Independence is the following:
define a random vector X=(X,, ..., X;) as (SY,, ..., SY,;) where the S;'s
are 11d random varlables, and § Is a random scale. In such cases, we say that the
distribution of X Is a scale mixture. If Y, has density f , then X has a density
glven by

R EYRESIED

f =1

If Y, has distribution functlon F =1-G, then

d .
PX,>z, ..., X;>z,) =E(HG(fS‘—)).

1=1
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Example 1.4. The multivariate Burr distribution.
When Y, Is Welbull with parameter a (l.e. G (y)=e™¥" (y >0)), and S 1s

gamma (b ), then (SY,, . . . , §Y, ) has distributlon function determlned by
' L n/S)
P(X1>$1,...,Xd>$d)=E(HC ' )
)
) 3

°°sb-16—a _s-c(glz‘a)‘
= [—c¢ ' ds

o T(b)
= - (z; >0, i=12,...,d).

i+t

1=1

This defines the multivarlate Burr distribution of Takahas! (1985). From this
relatlon it 1s also easily seen that all unlvarlate or multivariate marginals of a
multivarlate Burr distribution are unlvarlate or multivariate Burr distributions.
For more examples of scale mixtures In which S IS gamma, see Hutchinson

(1981). |}

Example 1.5. The multinomial distribution.

The condltional distrlbution method is not limited to continuous distribu-
tlons. For example, consider the multinomial distribution with parameters

n,py, ..., Ppg Where the p;,’s form a probablllty vector and n Is a posltive
Integer. A random vector (X,, ..., X;) Is multinomially distributed with these
parameters when
. . n! d i
P((Xl) .. -;Xd)=(11,- B fzd))=_—d-——Hp] !
II z'].g J=1
j=1
d
(1; 20, 5=1,...,d; Y ij=n).
J=1

This 1s the distributlon of the cardinalities of d urns into which n balls are
thrown at random and Independently of each other. Urn number 5 Is selected
with probability p; by every ball. The ball-ln-urn experlment can be mimlcked,
which leads us to an algorithm taking time O (n+d) and Q(n +d ). Note how-
ever that X, Is blnomial (n,p,), and that glven X, the vector (X,, ..., X;)Is
multinomtal (n-X,,q,, ..., g;) where g;=p; /(1-p,). This recurrence relatlon
Is nothilng but another way of descrlbing the conditional distribution method for
thls case. With a uniformly fast binomlal generator we can proceed In expected
time O (d) uniformly bounded in n: ' '
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Multinomial random vector generator

[NOTE: the parameters n,p,, ..., pg are destroyed by this algorithm. Sum holds a cumu-
lative sum of probabilities.]

Sum «0
FOR ¢ :=1 TO d DO

Generate a binomial (n ,%) random vector X; .

n—n-X;

Sum + Sum - p;

For small values of n, It 1s unlikely that this algorithm 1s very competltive,
malnly because the parameters of the blnomlal distribution change at every call.

1.5. Discrete distributions.’

Consider the problem of the generatlon of a random vector taking only
values on d-tuples of nonnegative Integers. One of the striking differences with
the continuous multlvarlate dlstributions Is that the d-tuples can be put Into
one-to-one correspondence wlith the nonnegative Integers on the real line. This
one-to-one mapping can be used to apply the Inverslon method (Kemp, 1981;
Kemp and Loukas, 1978) or one of the table methods (Kemp and Loukas, 1981).
We say that the functlon which transforms d-tuples Into nonnegative Integers Is
a coding function. The Inverse function Is called the decoding function.

Coding functlons are easy to construct. Conslder d ==2. Then we can visit all
2-tuples In the positive quadrant In cross-dlagonal fashlon. Thus, first we visit
(0,0), then (0,1) and (1,0), then (0,2),(1,1) and (2,0), etcetera. Note that we visit
all the Integers (¢,7 ) with ¢+ =k before visitlng those with ¢ +7 =k +1. Since

we Visit k(k-1)/2 2-tuples with 71+J <k, we see that we can take as coding
functlon

hing) = WRDCHI)
2
This can be generalized to d-tuples (exercise 1.4), and a slmple decoding function
exlsts which allows us to recover (¢,7) from the value of A(z,7) In time O (1)

(exerclse 1.4). There are other orders of traversal of the 2-tuples. For example, we
could visit 2-tuples In order of increasing values of max(z,7 ).
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In general one cannot visit all 2-tuples 1n order of Increasing values of 7, its
first component, as there could be an Infinlte number of 2-tuples with the same
value of ¢. It Is like trylng to visit all shelves In a llbrary, and gettlng stuck ip
the first shelf because 1t does not end. If the second component 1s bounded, as it
often s, then the llbrary traversal leads to a slmple coding functlon. Let M be
the maximal value for 7. Then we have '

h(i,5) = (M+1)i+7j

One should be aware of some pitfalls when the unlvarlate connectlon Is
exploited. Even If the distributlon of probablilty over the d-tuples Is relatlvely
smooth, the corresponding unlvarlate probabllilty vector Is often very oscillatory,
and thus unfit for use In the rejection method Relection should be applied
almost exclusively 10 the original space.

The fast table methods require a finite distribution. Even though on paper
they can be applled to all finlte distributions, one should realize that the number
of possible d-tuples In such distributions usually explodes exponentially with d.
For a distribution on the Integers In the hypercube {1 2, ., n }‘i the number
of possible values Is n?¢. For thls example, table methods seem useful only for
moderate values of d . See also exerclse 1.5.

Kemp and Loukas (1978) and Kemp (1981) are concerned with the Inverslon
method and its efficlency for various coding functlons. Recall that in the unlvarl-
ate case, inversion by sequentlal search for a nonnegative Integer-valued random
variate X takes expected tlme (as measured by the expected number of comparls-
ons) E(X)+1. Thus, with the coding function h for X,, ..., X,, we see
without further work that the expected number of comparlsons Is

EMh(X, ..., X;)+1).

Example 1.8.

Let us apply Inversion for the generatlon of (X,,X,), and let us scan the
space in cross diagonal fashlion (the coding function Is
.. 7 14+7-1

b )= & J)(2 7-1)

<1 ). Then the expected number of comparisons before

halting s
(X 1+ X)X+ X 1)

+X,+1

Thils Is at least proportional to elther one of the marginal second moments, and 1s
thus much worse than one would normally have expected. In fact, in d dimen-
sions, a similar coding function leads to a finlte expected time If and only If
E(X;%)<oo forall =1, ..., d (see exercise 1.8). | :



XI.1.GENERAL PRINCIPLES 561

Example 1.7.

Let us apply Inverslon for the generation of (X,,X,), where 0<X,<M, and
let us perform a llbrary traversal (the codlng function Is A (i,7) = (M +1)i +7).
Then the expected number of comparlsons before halting Is

E(M+1)X +X ,+1) .

This 1s finite when only the flrst moments are finite, but has the drawback that
M figures explicitly In the complexity. JJj

We have made our point. For large values of d, ordlnary generation
methods are often not feasible because of time or space inefficlencles. One should
nearly always try to convert the problem Into several unlvarlate problems. This
can be done by applylng the conditional distribution method. For the generatlon
of X,,X,, we first generate X ;, and then generate X, condltlonal on the given
value of X 1 Effectively, this forces us to know the marginal distribution of X,
and the Jolnt two-dlmenslonal distribution. The marglnal distribution of X, Is
not needed. To see how this improves the complexitles, consider using the inver-
slon method In both stages of the algorithm. The expected number of comparls-
ons in the generatlon of X, given X, 1s E (X, | X,)+1. The number of comparls-
ons Ip the generatlon of X1 Is X;+1. Summing and taklng expected values shows
that the expected number of comparisons is

E (X ,+X,+2)
(Kemp and Loukas, 1978). Compare with Examples 1.8 and 1.7.

In the conditional distribution method, we can Improve the complexity even
further by employing table methods In one, some or all of the stages. If d =2 and
both components have Infinite support, we cannot use tables. If only the second
component has Inflnite support, then a table method can be used for Xl. Thlis iIs
the ideal sltuation. If both components have finlte support, then we are tempted
to apply the table method In both stages. This would force us to set up many
tables, one for each of the possible values of X . In that case, we could as well
have set up one glant table for the entlre distribution. Flnally, If the first com-
ponent has infinite support, and the second component has finite support, then
the Incapabllity of storing an Infinlte number of finlite tables forces us to set up
the tables as we need them, but the time spent dolng so Is prohibitively large.

If a distribution is given in analytic form, there usually !s some special pro-
perty which can be used In the deslgn of an efficlent generator. Several examples
can be found In section 3.
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1.6. Exercises.

1. Conslder the denslty f (z,,2,) = 5z,¢ ~*“? defined on the Infinite strip
0.2<z2,<0.4, 0<z,. Show that the first component X, Is uniformly distri-
buted on [0.2,0.4], and that given X,, X, Is distributed as an exponential
random varlable divided by X, (Schmelser, 1980).

2. Show how you would generate random varlates with density

8
(1+z 4z ,+z,)*

(2 4,25,7520) .

Show also that X ;+X ,+X ; has density 3z?/(1+z)* (z >0) (Springer, 1979,
p.87).

3. Prove that for any distribution functlon F on R ¢ there exlsts a measurable
function ¢:[0,1]—R ¢ such that g (U) has distribution function F, where U
1s uniformly distributed on [0,1]. This can be consldered as a generallzation
of the Inversion method. Hint: from U we can construct d 1id uniform [0,1]
random varlables by skipping bits. Then argue via condlticning.

4. Conslder the chlng_ fgnct}on for 2-tuples of nonnegatlve Integers (z,7 ) given
by h(i,j) = L+ )(;'” )Y
A. Generalize this codlng function to d-tuples. The generalization should

be such that all d-tuples with sum of the commpnents equal to some
Integer k are grouped together, and the groups are ordered according to
Increasing values for k. Within a group, this rule should be applied
recursively to groups of d —~1-tuples with constant sum.

B. Glve the decoding functlon for the two-dimensional A shown above, and
indicate how 1t can be evaluated In time O (1) (Independent of the slze
of the argument).

5. Conslider the multlnomlal distributlon with parameters n,p,, ..., Py,
which assigns probabllity
n!

$;
— Il p;”
1’1! . id!j:l J
. d .
to all d-tuples with i >0, 3 ty=n. Let the total number of possible values
be N(n,d). For fixed n, find a simple functlon ¥(d ) with the property that

N(n,d) _
.z"féo wd)

This glves some 1dea about how quickly N (n,d) grows with d.

1.

8. Show that when a cross-dlagonal traversal Is followed In d dimensions for
Inversion by sequentlal search of a dlscrete probablilty distribution on the
nonnegative Integers of R d , then the expected time .required by the lnver-
slon Is flnite If and only If E(X,-d)<oo for all 7=1,...,d where
X, ..., X;152 d -dimensional random vector with the glven distributlon.
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7. Relationship between multinomial and Poisson distributions. Show
that the algorithm glven below in which the sample size parameter s used as

a mixlng parameter dellvers a sequence of d 1ld Polsson (\) random varl-
ables.

Generate a Poisson (d \) random variate N .

RETURN a multinomial (N,—l-, ce e, -:‘i-) random vector (X,, ..., X;).

Hint: this can be proved by expllicitly computing the probabllitles, by work-
Ing with generating functlons, or by employlng propertles of Polsson polnt
processes. '

8. A bivariate extreme value distribution. Marshall and Olkln (1983)
have studled multlvariate extreme value dlstributions In detall. One of the
distributions considered by them Is defined by

P(X,>5,X,>z,) = (e e e e oY (z;>0,2,20) .

How would you generate a random varlate with thils distribution?

9. Let f Dbe an arbltrary unlvariate denslty on (0,00). Show that
[ (z,+2,)/(z,+2,) (z,>0,2,>0) Is a blvarlate density (Feller, 1971,
p.100). Explolting the structure In the problem to the fullest, how would
you generate a random vector with the given bivarlate density?

2. LINEAR TRANSFORMATIONS. THE MULTINORMAL DISTRI-
BUTION.

2.1. Linear transformations.

When an R ¢-valued random vector X has denslty f (x), then the random
vector Y deflned as the solution of X=HY has density

g(y)= |H| f Hy),yeR?,

for all nonsingular d X d matrices H. The notation | H | Is used for the absolute
value of the determlnant of H. This property Is reciprocal, l.e. when Y has den-
Sty g, then X=HY has denslty [ .

The llnear transformation H deforms the coordinate system. Partlcularly
‘mportant llnear deformatlions are rotations: these correspond to orthonormal
‘ransformatlon matrices H. For random varlate generatlon, linear transformatlons
ire Important In a few speclal cases:
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A. The generation of polnts uniformly dlstributed in d-dimenslonal simplices or
hyperelllpsolds. 4

B. The generatlon of random vectors with a glven dependence structure, as
measured by the covarlance matrix.

These two appllication areas are now dealt with separately.

2.2. Generators of random vectors with a given covariance matrix.

The covarlance matrix of an R ¢-valued random vector Y with mean O Is
defined as ©=F (YY') where Y Is consldered as a column vector, and Y’ denotes
the transpose of Y. Assume first that we wish to generate a random vector Y
with zero mean and covarlance matrix X and that we do not care for the time
belng about the form of the distribution. Then, 1t Is always possible to proceed as
follows: generate a random vector X with d 11d components X,, ..., X, each
having zero mean and unlt varlance. Then define Y by Y=HX where H Is a
nonsingular d X d matrix. Note that

E(Y)=HEX)=o0,
E(YY)=HEXX)H =HH =% .

We need a few facts now from the theory of matrices. First of all, we recall the
definition of positive definiteness. A matrix A 1s positive definlte (positive sem!l-
definite) when x’ Ax > 0 (>0) for all nonzero R ¢ -valued vectors x. But we have

x'Sx = Ex'YY'x)=E(| |xXY]||)>o0

for all nonzero x. Here | |.| | Is the standard L, norm In R ¢. Equality occurs
only If the Y;'s are linearly dependent with probabllity one, l.e. x'Y==0 with pro-
babllity one for some x5£0. In that case, Y Is sald to have dimenslon less than d.
Otherwlse, Y Is sald to have dimension d. Thus, all covarlance matrices are pos}-
tive semidefinite. They are positive definlte If and only If the random vector In
question has dimension d .

For symmetric poslitive definite matrices X, we can always find a nonsingular
matrix H such that

HH =% .

In fact, such matrices can be characterized by the exlstence of a nonsingular H.
We can do even better. One can always find a lower trlangular nonsingular H
such that

HH =% .
‘We have now turned our problem into one of decomposing a symmetric positive

definite matrix T Into a product of two lower trlangular matrices. The algorithm
can be summarized as follows:
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Generator of a random vector with given covariance matrix

[SET-UP]

Find a matrix H such that HH' =X.

[GENERATOR]

Generate d independent zero mean unit variance random variates Xy, Xy

RETURN Y=HX

The set-up step can be done In time O (d®) as we wlll see below. Since H can
have up to 2(d?) nonzero elements, there 1s no hope of generating Y In less than
Q(d?). Note also that the distributlons of the X;’s are to be picked by the users.

We could take them 1ld and blatomlc: P (X =1)=PFP (X1=—1)=-;-. In that case,

Y 1s atomlc with up to 2¢ atoms. Such atomlc solutlons are rarely adequate.
Most applications also demand some control over the marglnal distributions. But
these demands restrict our cholces for X - Indeed, If our method 1s to be unlver-
sal, we should choose X |, . . ., X; In such a way that all llnear combinatlons of
these Independent random varlables have a given distribution. Thls can be
assured In several ways, but the cholces are llmited. To see thls, let us conslder
lld random variables X; with common characteristic functlon ¢, and assume that
we wish all linear comblnations to have the same distribution up to a scale fac-
tor. The sum Eanj has characteristlc function

d

i=1

This 1s equal to ¢(at) for some constant ¢ when ¢ has certaln functlonal forms.
Take for example

p(t)=e-It1°

for some a€(0,2] as In the case of a symmetric stable distribution. Unfortunately,
the only symmetric stable distribution with a flnlte variance 1s the normal distri-
bution (a==2). Thus, the property that the normal distributlon 1s closed under
the operation "llnear combination” Is what makes it so attractlve to the user. If
the user specifies non-normal marglnals, the covariance structure ls much more
difficult to enforce. See however some good solutlons for the blvariate case as
developed In section XI.3.

A computational remark about H 1s in order here. There Is a slmple algo-
rthm known as the square root method for finding a lower trlangular H with
HH = & (Faddeeva, 1959; Moonan, 1957; Grayblil, 1969). We glve the relatlon-
Ship between the matrices here. The elements of ¥ are called o;;» and those of
the lower trlangular solution matrix H are called hij-
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hiy=0:1/4/0y (11 L5d)

f~1
hyy = oi~ 3 hij? (1<i<d)
J=1
J-1
O¢5— E h:’k hjlc
hiy= ’“:1 (1<j<i<d)
ii
hij=0 (i<j<d)

2.3. The multinormal distribution.
The standard multinormal distribution on R ¢ has density

-Lyx
f(x)=(2m) %e ®
4 Lyxy
= (2m) %¢ 2 (x€ER ) .

This 1s the density of d 11d normal random varlables. When X has density [,
Y=HX has density

g(y)= |H?|fH'Yy),yeR? .

But we know that X=HH’, so that |H?'|=|%|"2 Also,
| | Hy | | 2=y’= 'y, which gives us the denslty
Z ——1- ——y’E’ly J
g(y)=(2m) ? || ? (YER?).

This is the density of the multinormal distribution with zero mean and nonsingu-
lar covarlance matrix X. We note without work that the ¢-th marginal distribu-
tion Is zero mean normal with varlance given by the ¢-th dlagonal element of .
In the most general form of the normal distribution, we need only add a transla-
tlon parameter (mean) to the distribution.

Random varlate generation for the normal distribution can be done by the
llnear transformation of d 1ld normal random varlables described In the previous
sectlon. This Involves decomposition of £ Into a product of the form HH’. This
method has been advocated by Scheuer and Stoller (1962) and Barr and Slezak
(1972). Deak (1979) glves other methods for generating multinormal random vec-
tors. For the conditional distribution method in the case d =2, we refer to Exam-
ple 1.2. In the general case, see for example Scheuer and Stoller (1962).

An Important speclal case Is the blvarlate multinormal distribution with zero
mean, and covariance matrix
1 p
p 1
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where p€[-1,1] Is the correlation between the two marglnal random varlables. It
Is easy to see that If (IN,IV,) are 1id normally distributed random varlables, then

R (Nple‘l" \% 1_p2N2)

has the sald distribution. The multinormal distributlon can be used as the start-
Ing polnt for creatlng other multlvariate distributions, see sectlon XI.3. We wlll
also exhlbit many multivariate distributions with normal marginals which are not
multinormal. To keep the termlnology consistent throughout thls book, we will
refer to all distributions having normal marginals as multivarlate normal dlstribu-
tlons. Multinormal distributlons form only a tlny subclass of the multlvarlate
normal dlstributions.

2.4. Points uniformly distributed in a hyperellipsoid.

A hyperellipsold In R*% Is deflned by a symmetric positlve definite d Xd
matrix A: 1t I1s the collectlon of all points YER ¢ with the property that

YAy <1.
A random vector uniformly distributed In this hyperelllpsold can be generated by
3 llnear transformatlon of a random vector X distributed uniformly In the unlt
hypersphere C; of R 4 guch random vectors can be generated quite efficlently
(see sectlon V.4). Recall that linear transformations cannot destroy uniformity.
They can only alter the shape of the support of uniform distributions. The only

problem we face Is that of the determination of the linear transformation In func-
tion of A.

Let us define Y=HX where H s our d Xd transformation matrix. The set
deflned by

YAy <1

&orresponds to the set
xHAHx < 1.

Bu: since this has to colnclde with x’x < 1 (the definltlon of Cy), we note that
H'AH =1

'“"-‘-}‘Te I 1s the unlt d Xd matrlx. Thus, we need to take H such that
A = HH'. See also Rublnsteln (1982).
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2.5. Uniform polygonal random vectors.

A convex polytope of R ¢ with vertices Vi, - - ., Vg Is the collectlon of all
polnts in R ¢ that are obtalnable as convex comblnations of Vi, ..., Vy Every
point x In this convex polytope can be written as

n
X = ¥4V
. oi=1
' n
for some a, ..., a, with a; 20, Y] a;=1. The set v,, ..., v, Is minimal for

f =1
the convex poly‘oope generated by 1t when all vi's are distinct, and no v; can be

written as a strict convex comblination of the \fi 's. ( A strict convex comblnat,lon
Is one which has at least one a; not equal to O or 1.)

We say that a set of vertlces v, ..., v,  1s In general position If no three
polnts are on a line, no four polnts are in a plane, etcetera. Thus, If the set of
vertices i1s minimal for a convex polytope P, then it is in general position.

A simplex s a convex polytope with d +1 vertlces In general position. Note
that d polnts In general positlon In R ¢ define a hyperplane of dimenslon d-1.
Thus, any convex polytope with fewer than d+1 vertices must have zero d-
dimensional volume. In this sense, the simplex Is the simplest nontrivial oblect in
R,

We can deflne a basic simplex by the orlgln and d polnts on the posltive
coordinate axes at distance one from the origin.

There are two distinct generation problems related to convex polytopes. We
could be asked to generate a random vector uniformly distributed In a given
polytope (see below), or we could be asked to generate a random collection of ver-
tices deflning a convex polytope. The latter problem 1s not dealt with here. See
however Devroye (1982) and May and Smith (1982).

Random wvectors distributed unlformly In an arbitrary simplex can be
obtalned by linear transformations of random vectors distributed uniformly In
the baslc simplex. Fortunately, we do not have to go through the agony of factor-
1zlng a matrix as In the case of a glven covarlance matrix structure. Rather, there
Is a surprisingly simple direct solution to the general problem.

Theorem 2.1.
Let (S,, . .., Sg4;) be the spaclngs generated by a uniform sample of slze d

on [0,1]. (Thus, S; 20 for all ¢, and })S;=1.) Then

d+1

X = E S" Vi

=1
Is uniformly distributed In the polytope P generated by Vi ooy Vdgr provided
that vy, . . ., Vg4, are in general position.
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Proof of Theorem 2.1.

Let S be the column vector S, . .., S;. We recall first that S is uniformly
distributed In the basic simplex B where
B ={(z,...,z5):2;20, Sz, <1}.
;

If all v{’s are consldered as column vectors, and A 1s the matrix
[Vl‘"vd-n Vo Va4 Vd“"d+1:| ’
then we can write X as follows:

d
X =v41+ 3 (ViVa41)Si = Vg +S'A .
§ =1
It I1s clear that X I1s uniformly distributed, since 1t can be obtalned by a llnear

transformation of 8. The support Supp (X) of the distribution of X Is the collec-
tion of all polnts which can be written as v, ,+a’A where a€B 1s a column vec-
d+¥1

tor. Flrst, assume that x€P. Then, x= 3 a; vy for some probabllity vector
§ =1
@y, ..., G54y This can be rewrltten as follows:
d
X = Vgt 3] 6 (Vi-Vae1) = Ve ta'A,
f=1
where a 1s the vector formed by a,, . . ., a;. Thus, P C Supp (X). Next, assume
x€ Supp (X). Then, for some column vector aEB,

d
X = Vg ta/A = vy, + 35 6; (ViVay)
f=1
d+1

= 338;V;,

f=1

which Implles that x 1s a convex combination of the vy's, and thus x&P . Hence
Supp (X) CP, and hence Supp (X)=P, which concludes the proof of Theorem

2.1. N

Example 2.1. Triangles.

The followlng algorithm can be used to generate random vectors uniformly
distributed in the trlangle defined by v,,v,, v, of R 2
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Generator for uniform distribution in triangle

Generate {id uniform [0,1) random variates U,V .
IF U>V thenswap U and V.
RETURN (Uv,+(V-U)vy+(1-V)vg)

See also exerclse 2.1. ]

Example 2.2. Convex polygons in the plane.

Convex polygons on R ? with n >3 vertices can be partitioned into n -2 dis-
Joint triangles. This can always be done by connecting all vertices with a desig-
nated root vertex. Trlangulation of a polygon 1s of course always possible, even
when the polygon Is not convex. To generate a polnt uniformly In a trlangulated
polygon, it suffices to generate a polnt uniformly in the :-th triangle (see e.g.
Example 2.1), where the ¢-th trlangle 1s selected with probabllity proportional to
Its area. It Is worth recalling that the area of a triangle formed by

(V10Y12)(V 215V 22),(V 31,V 30) 18

1
= | 3 (vi1vj2-v,v0) | - IR

2 1<y

We can deal with all simpllices In all Euclidean spaces via Theorem 2.1.
Example 2.2 shows that all polygons in the plane can be dealt with too, because
all such polygons can be trlangulated. Unfortunately, decomposition of d-
dimenslonal polytopes Into d -dlmenslonal slmpuces is not always possible, so that
Example 2.2 cannot be extended to higher dimensions. The decomposition Is pos-
sible for all convex polytopes however. A decomposition algorithm is glven In
Rubln (1984), who also provides a good survey of the problem. Theorem 2.1 can
also be found In Rublnsteln (1982). Example 2.2 describes a method used by
Hsuan (1982). The present methods which use decomposition and linear transfor-
mations are valld for polytopes. For sets with unusual shapes, the grid methods
of section VIIL.3.2 should be useful.

We conclude this sectlon with the simple mention of how one can attack the
decomposition of a convex polytope wlth n vertices Into slmplices for general
Euclldean spaces. If we are given an ordered polytope, l.e. a polytope with all 1ts
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faces clearly ldentlfled, and with polnters to nelghboring faces, then the partition
Is trivial: choose one vertex, and construct all simplices consisting of a face (each
face has d vertices) and the plcked vertex. For selectlon of a simplex, we also

need the area of a slmplex wlth vertices v;, 1 =1,2, . . ., d +1. This Is glven by
1Al
d!
where A Is the d X d matrlx with as columns V,=Vg.,, . . ., V4-V4,,. The com-

plexity of the preprocessing step (decomposition, computation of areas) depends
upon m, the number of faces. It 1s known that m =0 (n L /2J) (McMullen,
1970). Since each area can be computed In constant time (d s kept flxed, n
varles), the set-up tlme iIs O (m ). The expected generatlon tlme Is O (1) If a con-
stant time selection algorithm Is used.

The aforementloned ordered polytopes can be obtalned from an unordered
collectlon of n vertices In worst-case time O (n log(n )+n K¢ +1/2]y (seidel, 1081),
and this 1s worst-case optimal for even dimenslons under some computational
models.

2.6. Time series.

The generatlon of random time serles with certaln speclfic propertles (margl-
nal distributions, autocorrelation matrix, etcetera) 1s discussed by Schmelser
(1980), Franklin (1965), Price (19768), Hoffman (1979), L1 and Hammond (1975),
Lakhan (1981), Polge, Holllday and Bhagavan (1973), Mikhallov (1974), Fraker
and Rlppy (1974), Badel (1979), Lawrance and Lewls (1977, 1980, 1981), and
Jacobs and Lewls (1977).

2.7. Singular distributions.

Singular distributions In R are commonplace. Distributions that put all
thelr mass on a llne or curve in the plane are singular. So are distributions that
put all thelr mass on the surface of a hypersphere of R ‘. Computer generation
of random vectors on such hyperspheres 1s discussed by Ulrich (1984), who In par-
tlcular derlves an efficlent generator for the Fisher-von Mises distribution in R d,

A llne 1n R % can be glven in many forms. Perhaps the most popular form 1s
the parametric one, where x=h(z) and z€R s a parameter. An example Is the
circle In R 2, determlned by

z, == cos(2wz),

Z, = sin(27wz) .
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Now, if Z is a random varlable and h is a Borel measurable function, then
X=h(Z) 1s a random vector which puts all its mass on the line deflned by
x==h(z ). In other words, X has a line distribution. For a one-to-one mapping
h:R —R %, which Is also continuous, we can deflne a line density f (z) at the
point x=h(z) vla the relatlonships

b

P (X=h(z )for some z2€la,b)) = [f (z)P(z) dz (all [a,b]),

d
where (2 )=+ / 33 A ;%(z)1s the norm of the tangent of h at z, and k; Is the
=1

b
¢-th component of h. But since this must equal P (¢ <Z <} )=fg (2) dz where

a
g Is the density of Z, we see that

g(z)
f(z2)==——.
P(z)
For a uniform line density, we need to take ¢ proportional to ¥.

As a first example, consider a function in the plane determined by the equa-
tlon y=x(z) (0<z <1). A polnt with uniform line density can be obtained by
consldering the z -coordlnate as our parameter 2. This ylelds the algorithm

Generate a random variate X with density ¢ V1+x'%(2).
RETURN (X ,x(X))

This could be called the projection method for obtalning random varlates
with certaln line densitles. The converse, projection from a llne to the z-axis Is
much less useful, slnce we already have many technlques for generating real-line-
valued random varlates.

2.8. Exercises.

1. Conslder a triangle with vertices v,,v, Vg, and let U,V be 1id uniform [0,1]
random varlables.

A. Show that If we set Y+ v,+(vs—v,)U, and X«v,+(Y-v,)V, then X Is
not uniformly distributed In the glven trlangle. This method 1s mislead-

Ing, as Y is unlformly distributed on the edge (v,,v;), and X Is unl-
formly distributed on the line Joining v, and Y.
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"B. Show that X In part A is uniformly distributed In the sald triangle If we
replace V In the algorithm by max(V,V*) where V,V* are 11d uniform
[0,1] random variables.

2. Deflne a simple boolean functlon which returns the value true If and only If
X belongs to the a triangle In R? with three glven vertlces.

3. Conslder a trlangle ABC where AB has length one, BC has length b, and the
angle ABC is 4. Let X be uniformly distributed In the trlangle, and let Y be
the Intersection of the llnes AX and BC. Let Z be the distance between Y
and B. Show that Z has density

1
V 22-22 cos(8)+1

(0<z<b).

Compare the geometric algorithm for generating Z glven above with the
inversion method.

3. DEPENDENCE. BIVARIATE DISTRIBUTIONS.

3.1. Creating and measuring dependence.

In many experiments, a controlled degree of dependence Is required. Some-
times, users want distributions with glven marglnals and a glven dependence
structure as measured with some criterion. Sometimes, users know precisely what
they want by completely specifylng a multlvariate distributlon. In thls sectlon,
we will malnly look at problems In which certaln marginal distributions are
needed together with a given degree of dependence. Usually, there are very many
multivariate distributions which satisfy the glven requirements, and sometimes
there are none. In the former case, we should design generators which are efficlent
and lead to distributions which are not unrealistic.

For a clear treatment of the subject, 1t is best to emphasize blvarlate distri-
butlons. A number of different measures of assoclatlon are commonly used by
practicing statlsticlans. Flrst and foremost Is the correlation coefficient p (also
called Pearson product moment correlation coefficient) defilned by

| E(X i) (X )
r= 010,

’

where u,,i4, are the means of XI,XQ, and o,,0, are the correspondlng standard
deviations. The key propertles of p are well-known. When X ,,X, are Indepen-
dent, p==0. Furthermore, by the Cauchy-Schwarz Inequality, 1t 1s easy to see that
| p| <1. When X,=X,, we have p=1, and when X ,=-X,, we have p=-1.
Unfortunately, there are a few enormous drawbacks related to the correlation
coefficlent. First, 1t 1s only deflned for distributlons having marginals with flnlte
varlances. Furthermore, 1t is not invariant under monotone transformatlons of
the coordinate axes. For example, If we define a blvarlate uniform distribution
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with a glven value for p and then apply a transformation to get certaln specific
marglnals, then the value of p could (and usually does) change. And most Impor-
tantly, the value of p may not be a solld Indicator of the dependence. For one
thing, p=0 does not Imply Independence.

Measures of assoclation which are Invarlant under monotone transformations
are In great abundance. For example, there 1s Kendall’s tau defined by

7= 2P (X -X,)(X",-X",)>0)-1

where (X ,,X,) and (X’,,X’,) are 11d. The Invariance under strictly monotone
transformatlons of the coordlnate axes Is obvious. Also, for all distrlbutions, 7
exists and takes values In [-1,1], and 7=0 when the components are Independent
and nonatomlc. The grade correlation (also called Spearman’s rho or the
rank correlation)'pg Is defined as p(F,(X,),F ,(X,)) where p Is the standard
correlatlon coefflclent, and F,,F, are the marginal distributlon functions of
X .X , (see for example Gibbons (1971)). p, always exists, and Is Invarlant under
monotone transformatlions. 7 and p, are also called ordinal measures of assocla-
tion since they depend upon rank Information only (Kruskal, 1958). Unfor-
tunately, 7==0 or p,=0 do not lmply Independence (exerclse 3.4). It would be
desirable for a good measure of assoclation or dependence that it be zero only
when the components are independent.

The two measures glven below satisfy all our requirements (universal
existence, Invarlance under monotone transformations, and the zero value Imply-
Ing Independence):

A. The sup correlation (or maximal correlation) p* defined by Gebeleln
(1941) and studied by Sarmanov (1962,1963) and Reny! (1959):

(X X 5) = sup p(g (X 1),9.(X )

where the supremum Is taken over all Borel-measurable functions ¢,,g , such
that ¢,(X,).,9,(X,) have finite positive varlance, and p is the ordinary corre-
latlon coefficlent.

B. The monotone correlation p* Introduced by Kimeldorf and Sampson
(1978), which Is defined as 7 except that the supremum ls taken over mono-
tone functlons ¢ ,,9, only.

Let us outllne why these measures satisfy our requirements. If p*=0, and
X ,,X , are nondegenerate, then X, Is Independent of X, (Kimeldorf and Samp-
son, 1978). This Is best seen as follows. We first note that for all s,t,

P (oo, (X 1) Lo 1)( X p)) =0
because the indicator functions are monotone and p*=0. But thls implies
P(X,<s5,X,<t) = P(X,<s)P(X,<t),
which In turn Implies Independence. For 7, we refer to exercise 3.6 and Reny!
(1959). Good general discusslons can be found in Reny! (1859), Kruskal (1958),

Kimeldorf and Sampson (1978) and Whitt (19768). The measures of dependence
are obviously Interrelated. We have directly from the definltlons,
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lo| <p*x <p<1.

There are examples In which we have equality between all correlatlon coefficlents
(multivariate normal distrlbutlon, exercise 3.5), and there are other examples In
whlich there Is strict Inequallty. It Is perhaps Interesting to note when p* equals
one. This Is for example the case when X, s monotone dependent upon X, L.e.
there exlsts a monotone function g such that P(X,=g¢(X,)=1, and X ,X, are
nonatomic (Kimeldorf and Sampson (1978)). This follows directly from the fact
that p* 1s Invarlant under monotone transformatlons, so that we can assume
without loss of generallty that the distribution 1s blvarlate uniform. But then g
must be the ldentity function, and the statement Is proved, l.e. p*==1. Unfor-
tunately, p* =1 does not imply monotone dependence.

For continuous marginals, there Is yet another good measure of dependence,
based upon the distance between probabllity measures. It 1s defined as follows:

L =sup | P((X1X)EA )P (X}, X,)EA) |
= é— T @ue-f 1= )f o(z,)]| doydz,,

where A 1s a Borel set of R?, X, Is distributed as X ,, but Is Independent of X,
/ s the density of (X,,X,), and f,f, are the marginal densitles. The
supremum In the definltlon of . measures the distance between the given blvarl-
ate probablllty measure and the artificlal blvarlate probabllity measure con-
structed by taking the product of the two particlpating marginal probabllity
measures. The Invarlance under strictly monotone transformations 1s clear. The

integral form for L 1s Scheffe's theorem In disgulse (see exerclse 3.9). It is only
valld when all the given densitles exlst.

Example 3.1.

It Is clearly possible to have uniform marglnals and a singular blvarlate dis-
tributlon (conslder X ,=X,). It Is even possible to find such a singular distribu-
tlon with p==p, ==0 (conslder a carefully selected distribution on the surface of
the unlt clrcle; or conslder X ,=8X'| where S takes the values +1 and -1 with
equal probablility). However, when we take A equal to the support of the singular
distributlon, then A has zero Lebesgue measure, and therefore zero measure for
any absolutely contlnuous probabllity measure. Hence, L =1. In particular, when

X, 1s monotone dependent on X,. then the blvarlate distributlon Is singular, and
therefore L =1.
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Example 3.2.

X ,X, are Independent If and only if L ==0. The If part follows from the
fact that for all A, the product measure of A Is equal to the glven blvarlate pro-
babllity measure of A. Thus, both probability measures are equal. The only 1If
part Is trivially true. JJjj

In the search for good measures of assoclation, there Is no clear winner. Pro-
babllity theoretical conslderations lead us to favor L over pgp* and g. On the
other hand, as we have seen, approxlmating the bivariate distribution by a slngu-
lar distributlon, always glves L =1. Thus, L is extremely sensltive to even small
local deviatlons. The correlation coefficlents are much more robust In that
respect.

We will assume that what the user wants is a distribution with glven abso-
lutely contlnuous marginal distribution functlons, and a given value for one of
the transformatlon-lnvarlant measures of dependence. We can then construct a
bivarlate uniform distribution with the glven measure of dependence, and then
transform the coordinate axes as In the univarlate inverslon method to achleve
glven marglinal distributlons (Nataf, 1962; Kimeldorf and Sampson, 1975; Mardia,
1970). If we can choose between a family of blvarlate uniform distributlons, then
It 1s perhaps possible to pick out the unlque distribution, if it exists, with the
glven measure of dependence. In the next section, we wlll deal with blvariate unl-
form distributions In general. : '

3.2. Bivariate uniform distributions.

We say that a distrlbution Is blvarlate uniform (exponential, gamma, nor-
mal, Cauchy, etcetera) when the unlvariate marglnal distributions are all uniform
(exponentlal, gamma, normal, Cauchy, etcetera). Distributions of this form are
extremely Important In mathematical statistlecs in the context of testing for
dependence between components. First of all, If the marginal distributions are
contlnuous, 1t Is always posslble by a transformation of both axes to Insure that
the marginal distributions have any prespecified density such as the uniform [0,1]
density. If after the transformation to uniformity the jolnt density Is uniform on
[0,1]2, then the two component random varlables are Independent. In fact, the
Jolnt density after transformation provides a tremendous amount of information
about the sort of dependence.

There are varlous ways of obtalning blvarlate distributlons with specified
marginals from blvarlate unlform distributions, which make these uniform distri-
butions even more Important. Good surveys are provided .by Johnson (1976),
Johnson and Tenenbein (1979) and Marshall and Olkin (1983). The following
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theorem comes closest to generallzing the unlvarlate properties which lead to the
inversion method.

Theorem 3.1.

Let (X,,X,) be bivarlate unlform with Jolnt denslty ¢g. Let f ,,f , be fixed
unlvarlate densltles with corresponding distribution functions F vF o- Then the
denslty of (Y ,,Y,) = (F1,(X,),F1,(X,) 1s

[y 1Y) = f Wy 1)f oY 2)9 (F 1('3] 1)vF2('3/2)) .

Conversely, If (Y,,Y,) has density f glven by the formula shown above, then
Y, has marginal density f, and Y, has marginal density f,. Furthermore,
(X 1,.X o) = (F (Y ,),F,(Y,)) is blvarlate uniform with joint density

-1 -1
RN LG G BN

/ 1(F_11(371))f 2(F—12("32))

Proof of Theorem 3.1.
Stralghtforward. [Jj

There are many reclpes for cooking up bivariate distributions with specified
marginal distributlon functions F 1,F o We WwIII list a few In Theorem 3.2. It
should be noted that If we replace F,(z,) by z, and F,(z,) by z, In these
recipes, then we obtaln bivarlate unliform distribution functions. Recall also that
the bivarlate denslty, if It exlsts, can be obtalned from the bivarlate dlstributlon
function by taking the partlal derlvatlve with respect to dz,0z,.
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Theorem 3.2.

Let F,=F |(z,),F ,=F ,(z,) be unlvarlate distribution functions. Then the
following Is a list of blvarlate dlstribution functions F =F (2 ,,z,) having as mar-
ginal distribution functlons F'; and F

A. F = F F,(14+a(1-F)(1-F,)). Here a 6[41,1] Is a parameter (Farlle (1960),
Gumbel (1958), Morgenstern (1956)). This wlill be called Morgenstern's fam-
ily.

B. F FuFs H

. == - . ere a €|~-1,1] 1 t 11, hal
e -F JOF ) €[-1,1] 1s a parameter (All, Mikhall and
Haq (1978)). ,

C. F s the solutlon of F (1~F~F ,+F )= a(F,~F )(F ,~F ) where ¢ >0 Is a
parameter (Plackett, 1965).

D. F==amax(0,F,+F ,-1)+(1-a )min(F,,F,) where 0<a <1 Is a parameter
(Frechet, 1951). :

E. (-log(F))™ = (-log(F ,))™ +(-log(F,))™ where m >1 is a parameter (Gum-
bel, 1960).

Proof of Theorem 3.2.

To verlfy that F Is Indeed a distribution function, we must verlfy that F Is
nondecreasing in both arguments, and that the limits as z,,2 ,——0c0 and —o0 are
0 and 1 respectlvely., To verlfy that the marginal distribution functlons are
correct, we need to check that

Im F(z,,2,) = F,z,)

Z =00
and

| Im F(z,,2,) = Fy(z,).

Z 100

The latter relations are easlly verified. [}

It helps to visualize these reclpes. We begln' with Frechet's inequalltles
(Frechet, 1951), which follow by simple geometric arguments in the plane:
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Theorem 3.3. Frechet’s inequalities.

For any two unlvarlate dlstributlon functions F|,F,, and any bivariate dis-
tribution functlon F' having these two marginal distribution functions,

max(0,F (2 )+F 5(y }-1) < F(z,y) < min(F ((z),F(y)) -

Proof of Theorem 3.3.

For fixed (z,,7,) In the plane, let us denote by Qsz.Qng Qsw ,@nw the
four quadrants centered at z,y where equality Is resolved by Including boun-
darles with the south and west halfplanes. Thus, (z,,7,) belongs to Qg while
the vertlcal line at z, belongs to Qgw UQNw - It 1s easy to see that at z,,%,,

Fi(z,)=P(QswUQnw)
Fo(x5) = P(QswUQsE) »
F(z,z5) = P(Qsw) -
Clearly, F <min(F ,F,) and 1-F <1-F +1-F,. |}

These inequalities are valid for all bivarlate distributlon functlons F with
marginal distribution functions F ; and F o Interestingly, both extremes are also
valld distribution functions. In fact, we have the following property which can be
used for the generation of random vectors wlth these distribution functlons.

Theorem 3.4.

Let U be a uniform [0,1} random variable, and let F',, F', be contlnuous
unlvariate distribution functions. Then '

(F4(U).F(U))
has distributlon function min(¥ ,F',). Furthermore,
(FH(U)F(1-U))

has distribution functlon max(0,F |+F o~1).
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Proof of Theorem 3.4.
We have

P (F(U)<2,, F Y (U)=2,) = P (U <min(F (z,),F (z,))) -
Also,
P(F"l(U)le,F"lg(l—-U)=x2) = P(ULF,(z,),1-U<F,z,) . R

Frechet's extremal distribution functions are those for which maximal posi-
tlve and negative dependence are obtalned respectively. This Is best seen by con-
sidering the blvariate unlform case. The upper distribution function min(z,,z,)
puts 1ts mass uniformly on the 45 degree dlagonal of the first quadrant. The bot-
tom distribution function max(0,7,+,~1) puts its mass unlformly on the -45
degree dlagonal of [0,1]%. Hoefiding (1940) and WHhitt (1978) have shown that
maximal positlve and negatlve correlation are obtalned for Frechet's extremal dis-
tributlion functions (see exercise 3.1). Note also that maximally correlated random
variable are very Ilmportant In varlance reduction technlques In Monte Carlo
simulation. Theorem 3.4 shows us how to generate such random vectors. We have
thus ldentified a large class of applications In which the inversion method seems
~ essentlal (Fox, 1980). For Frechet's bivarlate family (case D in Theorem 3.2), we
note without work that 1t suffices to consider a mixture of Frechet's extremal dis-
tributlons. This Is often a poor way of creating intermedlate correlation. For
example, In the blvarlate uniform case, all the probabllity mass Is concentrated
on the two dlagonals of [0,1)%.

The list of examples In Theorem 3.2 1s necessarlly Incomplete. Other exam-
ples can be found In exerclses 3.2 and 3.3. Random varlate generation Is usually
taken care of via the conditional distribution method. The following example
should suffice.

Example 3.3. Morgenstern’s family.

Conslder the uniform verslon of Morgenstern's blvarlate family with parame-
ter | a | <1 glven by part A of Theorem 3.2. It Is easy to see that for this fam-
lly, there exists a density given by

[ (z,z,) = 14+a (27 ,-1)(22 ,-1) .
Here we can generate X, uniformly on [0,1]. Glven X ;, X, has a trapezoldal den-

sity which is zero outslde [0,1] and varles from 1-g¢(2X,-1) at z,=0 to
14+a(2X,-1) at z2,=1. If U,V are 11d unlform [0,1] random varlables, then X,



XI.3.DEPENDENCE 581

can be generated as

14 1

T V(O A— —_

min(V ~= (2X1—1)) Xh<3
V 1 .

—— >

max(U,1 a(2X1—1)) X1_2

There are other Important conslderations when shopplng around for a good
bivariate uniform famlily. For example, It Is useful to have a family which con-
talns as members, or at least as llmits of members, Frechet’s extremal distribu-
tlons, plus the product of the marglnals (the Independent case). We will call such
familles comprehensive. Examples of comprehensive bivarlate famllles are given
In the table below. Note that the comprehensiveness of a famlly Is Invarlant

under strictly monotone transformations of the coordinate axes (exercise 3.11), so
that the marginals do not really matter.

Distribution function Reference

F is the solution of Plackett (1965)
F(1-F |-F+F) = a(F,-F)}(F,F)
where ¢ >0 is a parameter

_a*(1-a)

F Frechet (1958)

2
1
L2 tae)

max(0,F +F ,~1)

min(F ,F,)+(1-e?)F | F,

where | ¢ | <1 is a parameter

B ad wudtd Bivariate normal (see e.g. Mardia, 1970)
1 e 2(1-r?)
2V 1-r?
| 7 | <1 is a measure of associ-
ation

where

From this table, one can create other comprehensive famillles elther by monotone
transformatlons, or by taking mixtures. Note that most famllles, including
Morgenstern’s famlly, are not comprehensive.

Another Issue s that of the range spanned by the famlily in terms of the
values of a glven measure of dependence. For example, for Morgenstern's bivarl-
ate uniform famlly of Example 3.3, the correlation coefficlent Is ~a /3. Therefore,

1t can take all the values in [—%,%—], but no values outside this Interval. Needless

to say, full ranges for certain measures of assoclatlon are an asset. Typically, this
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goes hand In hand with comprehensiveness.

Example 3.4. Full correlation range families.

Plackett’s blvarlate famlly with parameter ¢ >0 and arbitrary continuous
marginal distribution functions has correlation coefficlent

_ ~(1-a 2)-2a log(a )
(1~a)?

14 )
which can be shown to take the values 1,0,~1 when a —o0, a =1 and a =0
respectively (see e.g. Barnett, 1980). Since p Is a continuous function of a, all
values of p can be achleved.

The blvarlate normal family can also achleve all possible values of correla-
tlon. Since for this famlly, p==p* =7, we also achleve the full range for the sup
correlation and the monotone correlation. |

Example 3.5. The Johnson-Tenenbein families.

Johnson and Tenenbeln (1981) proposed a general method of constructing
bivariate famllles for which 7 and p, can attain all possible values In (-1,1). The
method conslsts slmply of taking (X ,,X,)=(U,H (¢U+(1~-c)V)), where U,V
are lid random varlables with common distribution functlon F, ¢ €[0,1] Is a
welght parameter, and H Is a monotone functlon chosen In such a way that
H (cU+(1-c )V) also has distributlon function F'. To take a simple example, let
U,V be 1d_normal random varlables. Then we should take
H(u)=u/V c%4+(1-c )?°. The resultlng two-dlmenslonal random vector Is easlly
seen to be bivarlate normal, as It 1s a linear combination of 11d normal random
variables. Its correlation coefficlent s

_—

Ve?+(1-¢)?
which can take all values in [0,1]. Moreover,
¢

2 V¢ 24(1-c )? )
c

T == 3arcsln(——-——-———-—)
T Ve 24 (1-¢ )?

It 1s easy to see that these measures of assoclation can also take all values in [0,1)
when we vary c¢. Negatlve correlatlons can be achleved by considering
(-U,H(cU+(1-¢)V)). Recall next that 7 and Py are invarlant under strictly

Py = -f-r-arcsln(
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monotone transformations of the coordinate axes. Thus, we can now construct
blvarlate famllies with specified marginals and glven values for py orT. .

3.3. Bivariate exponential distributions.

We will take the blvariate exponential distribution as our prototype distribu-
tlon for lllustrating Just how we can construct such distributions directly. At the
-same tlme, we will discuss random varlate generators. There are two very
different approaches:

A. The analytlc method: one defines explicltly a blvarlate density or distribu-
tlon function, and worrles about generators later. An example 1s Gumbel’s
bivariate exponentlal family (1960) described below. Another example Is the
distribution of Nagao and Kadoya (1971) dealt with in exerclse 3.10.

B. The emplric method: one constructs a palr of random varlables known to
have the correct marginals, and worrles about the form of the distributlon
functlon later. Here, random varlate generation Is typlically a trivial problem.
Examples Include distributlons proposed by Johnson and Tenenbeln (1981),
Moran (1967), Marshall and Olkin (19687), Arnold (1967) and Lawrance and
Lew!s (1983).

The distinctlon between A and B Is often not clear-cut. Famllies can also be
partitioned based upon the range for glven measures of assoclation, or upon the
notlon of comprehensiveness. Let us start with Gumbel's ‘famlily of blvariate
exponential distribution functions:

~T -2 1~Zo02 122

1-e "¢ "2pe (1,7 ,>0) .

Here a €[0,1] 1s the parameter. The Jolnt denslty 1s

¢ ~31T g1y ( (1+aa: 1)(1+am 2)"“] .

Notice that the conditional denslty of X, glven X =z, Is

e T2 (14 4z Y140z ,)-a)

- 60— -
= —3-(921726 f22) 4 ——éi[ﬁc bz2)

where f=1+az,. In thls decomposition, we recognlze a mixture of a gamma (2)
and a gamma (1) density. Random varlates can easily be generated vlia the condl-
tlonal distrlbutlon method, where the conditlonal distributlon of X, given X, can
be handled by composltion (see below). Unfortunately, the family contalns only
none of Frechet's extremal distributions, which suggests that extreme correlations
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cannot be obtalned.

Gumbel’s bivariate exponential distribution with parameter a

Generate 11d exponentlial random varlates X,,X,.
Generate a unlform [0,1) random varlate U.

<__ ¢
F U= 1+aX,

THEN
Generate an exponential random varlate E.
XX, +E

X
RETURN (Xl,-ﬁ-é—(—)
1

Generallzatlons of Gumbel’s distribution have been suggested by various
authors. In general, one can start from a blvariate uniform distribution function
F, and define a blvarlate exponentlal distribution function by

F(1-e"41-e77%) .

For a generator, we need only constder (-log(U ),~log(V')) where U,V Is bivarlate
uniform with distribution function F. For example, If we do thls for
Morgenstern's family with parameter |a | <1, then we obtaln the blvarlate
exponential distribution function

(1~ ) (1-e *)(1+ae ") (2,,2,>0).

This distributlon has also been studled by Gumbel (1960). Both Gumbel's
exponentlal distributions and other possible transformations of bivariate uniform
distributions are often artificlal. :

In the emplric (or constructive) method, one argues the other way around,
by first defining the random vector. In the table shown below, a sampling of such
bivariate random vectors Is given. We have taken what we consider are good
didactical examples showing a varlety of approaches. All of them explolt speclal
properties of the exponentlal distribution, such as the faet that the sum of
squares of 1ld normal random varlables s exponentially distributed, or the fact
that the minimum of Independent exponential random varlables Is agaln exponen-
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tially dlstributed.

(X1, X5)

Reference

El 3 2 E3
in(~—,——),min(~—, —
[“”“xl P VW ]

Marshall and Olkin (1967)

585

(ﬁlEl+le2,ﬂzE2+SzEl) , Lawrance and Lewis (1983)
P (S, =1)=—~‘1—P (S, '—‘—‘0)=1-,3,' (1 ———1,2)

By By Johnson and Tenenbein (1981)
[El,—log((l—c Ye ©4ce ¢ )+log(l-2¢ )],

¢ €[0,1]

1 1 Moran (1967)
[Taveena.oveen ),

(N,N,) (N, Ny iid multinor-
mal with correlation p

In this table, £ ,E,,E are 11d exponentlal random varlates, and X\;,\p,A3>>0 are
parameters with A A,+X;>0. The /V;'s are normal random vartables, and ¢,8;,5,;
are [0,1]-valued constants. A speclal property of the marginal distributlon, closure

under the operation min, 1s exploited in the deflnitlon. To see this, note that for
x>0,

PX,>z)= P(E,>N\z,E;>N2)
— e—()\1+>\s)-'¢ (iL‘ >0) .

Thus, X ; 1s exponential with parameter A;+X,. The Jolnt distribution function is
unlquely determined by the function G (z,,z,) deflned by

G($1,$2) — P(X1>.’171,X2>$2) — C—Mzr)\zzr)\smax(zl,xz) ]

The distrlbution 1s a mixture of a slngular distributlon carrylng welght
Aa/(A+X+X;3), and an absolutely contlnuous part (exerclse 3.8). Also, it Is unfor-
tunate that when (X,,X,) has the glven blvarlate exponential distribution, then
(a,X,,a;X,) Is bivarlate exponentlal In the case a,==a, only. On the positlve
slde, we should note that the famlly Includes the Independent case (A\;==0), and
one of Frechet's extremal cases (A\;==X\,==0). In the latter case, note that

G (x 1,1?2) == P(X1>$1,X2>x2) — e'xsmax(zx,xz) )

The Lawrance-Lewls bivarlate exponential 1s Just one of a long list of blvarl-
ate exponentlals constructed by them. The one glven In the table 1s particularly
flexible. We can qulckly verify that the marglnals are exponentlal via charac-
teristic functlons. The characteristic functlon of X, Is

¢(t ) = E (C ftXl) = F (C ﬁll'tEl)(ﬂl_*_(l__ﬁl)E (6 l'tEg))

. 1 , (1‘51) 1
T 1-it B Gt=me) = o




586 XI1.3.DEPENDENCE

The correlation p=28,(1-5,)+F,(1-f;), valld for 0<f3,<f,<1, can take all
values between O and 1. To create negative correlation, one can replace EI,E2 in
the formulas for X, by two other exponentlal random varlables, h(E ),k (E,)
where h (z )=-log(1-e¢~*) (Lawrance and Lewls, 1983).

The Johnson and Tenenbein construction s almost as slmple as the
Lawrance-Lewls construction. Interestingly, by varylng the parameter ¢, all pos-
sible nonnegatlive values for Pgr T and p are achlevable.

Flnally, In Moran’s bivarlate distribution, good use s made of yet another
property of exponential random wvarlables. His distribution has correlation p2
where p 1s the correlation of the underlying blvariate normal distribution. Agaln,
random varlate generation Is extremely slmple, and the correlation spans the full
nonnegatlve range. DIfficulties arise only when one needs to compute the exact
value of the density at some polnts, but then agaln, these same difficultles are
shared by most emplric methods.

3.4. A case study: bivariate gamma distributions.

‘We have seen how bivariate distributions with any glven marginals can be
constructed from bivarlate uniform distributions or blvarlate distributions with
other contlnuous marginals, via transformations of the coordinate axes. These
transformatlions leave PgT and other ordinal measures of assoclatlon invarlant,
but generally speaking not p. Furthermore, the inversion of the marginal distribu-
tlon functions (F ,F,) required to apply these transformations Is often unfeasible.
Such Is the case for the gamma distribution. In this section we will look at these
new problems, and provide new solutions.

To clarlfy the problems with inverslon, we note that If X ,,X, Is blvarlate
gamma (@ ,,a,), where a; Is the parameter for X;, then maximum and minimum
correlation are obtalned for the Frechet bounds, l.e.

X,=F,\(F (X)),

X,=F,'(1-F (X))
respectively (Moran (1967), Whitt (1978)). Direct use of Frechet's bounds is possi-
ble but not recommended If generator efficlency s Important. In fact, it i1s not
recommended to start from any bivariate uniform distribution. Also, the method
of Johnson and Tenenbein (1981) lllustrated on the bivarlate uniform, normal

and exponential distributions in the previous sectlons requires an Inversion of a
gamma distribution functlon if it were to be applied here.

We can also obtaln help from the composition method, noting that the ran-
dom vector (X ;,X,) defined by

{ (Y,,Y,) ,with probability p
(XI’X?) — 1 (Z2,,Z,) ,with probability 1-p
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has the right marginal distributions If both random vectors on the right hand
side have the same marglnals. Also, (X,,X,) has correlatlon coeflficlent
p py+(1-p)pz where py,pz are the correlatlon coefficlents of the two glven ran-
dom vectors. One typlcally chooses py and py at the extremes, so that the
entire range of p values Is covered by adjusting p. For example, one could take
py =0 by considering 1id random varlables Y,,Y,. Then p; can be taken maxl-
mal by using the Frechet maxlimal dependence as In
(Z 1,2 4) = (Z,,F ;Y (1~-F ((Z)) where Z, Is gamma (a,). Dolng so leads to a mix-
ture of a continuous distribution (the product measure) and a silngular distribu-
tion, which Is not desirable.

The gamma distribution shares with many dlstributions the property that 1t
1s closed under additions of Independent random variables. This has led to
inversion-free methods for generating blvarlate gamma random vectors, now
known as trivariate reduction methods (Cherlan, 1941; David and Fix, 1961;
Mardla, 1970; Johnson and Ramberg, 1977; Schmelser and Lal, 1982). The name
1s borrowed from the princlple that two dependent random varlables are con-
structed from three Independent random varlables. The applicatlon of the princi-
ple 1s certalnly not llmlted to the gamma distribution, but 1s perhaps best 1lllus-
trated here. Conslder Independent gamma random varlables G,,G,,G 5 with
parameters @ .,d,,a65. Then the random vector

(XX o) = (G 1+G5,G,+Gy)
Is blvarlate gamma. The marginal gamma distributions have parameters ¢ ;+a;

and a ,+a; respectively. Furthermore, the correlation s glven by

!
p = .
\/(a 1+as)agtas)

If p and the marginal gamma parameters are speclfied beforehand, we have one of
two situations: elther there Is no possible solutlon for @, ,,a 3, or there Is exactly
one solution. The limitation of this technique, which goes back to Cherlan (1941)
(see Schmelser and Lal (1980) for a survey), 1s that

min(ay,®,)
A/ 00

where o;,0, are the marginal gamma parameters. Within thls range, trlvarlate
reduction leads to one of the fastest algorlthms known to date for blvarlate
gamma, dlstributlons.

0<p<
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Trivariate reduction for bivariate gamma distribution

[NOTE: p is a given correlation, a,,a, ar? giver)1 parameters for the marginal gamma distri-
min(a,, 0,

butions. It is assumed that 0 < p <
- AVASILe S
[GENERATOR]

Generate a gamma (a,—p\/,a,) random variate G ;.
Generate a gamma (o,—p+/@,0,) random variate G ,.
Generate a gamma (py/a,,) random vartate Gg.

RETURN (G ,+ G 5,G o+ Gy)

Ronning (1977) generalized this principle to higher dimenslons, and suggested
several possible lilnear comblnations to achleve desired correlations. Schmelser and
Lal (1982) (exercise 3.19) flll the vold by extending the trlvarlate reduction
method In two dimensions, so that all theoretically possible correlations can be
achleved In blvariate gamma distributions. But we do not get something for noth-
ing: the algorithm requires the Inverslon of the gamma distribution function, and
the numerical solution of a set of nonlinear equations in the set-up stage.

3.5. Exercises.

1. Prove that over all blvariate distribution functions with given marginal
unlvarlate distribution functions F,,F,, the correlation coefficlent p Is
minimized for the distribution function max(0,F ;(z )+F o(y )-1). It Is maxim-
1zed for the distribution function min(F ,(z ),F,(y)) (Whitt, 1976; HoeffdIng,
1940).

2. Plackett’s bivariate uniform family (Plackett (1965). Consider the
blvariate uniform family defined by part C of Theorem 3.2, with parameter
a >0. Show that on [0,1]2, this distribution has a denslty glven by

a(a-1)(z,+y,-22,7,)+a

f ($1,$2)= 3/2 -
[((a ——1)(3:1+x2)+1)2—4a (a —1)9:1:1:2)

For this distribution, Mardla (1970) has proposed the following generator:
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~J

Mardia's generator for Plackett’s bivariate uniform family

Generate two iid uniform [0,1] random variables U,V .

X,<U

Z+~V(1-V)

27 (a®?X +1-X )+a (1-22 )~(1-2V )\/a (a +4ZX,(1-X ,)(1~¢ )?)
a+2Z(1-a)?

Xg“—

RETURN (X,,X,)

Show that this algorithm 1s vallid.

Suggest generators for the followilng blvarlate unlform famllles of distribu-
tions: :
Density Parameter(s) Reference
T Ita((m+1)z," -1)((n +1)z," ~1) ;lzga <max(m,n), m,n >0 Farlie (1960)
28 -1
a(zll—-u +z21-a__1) 1-a
a>1
(z425)" (derived from multivari-
ate Pareto)
n(l+u?)(1+v2) whe Mardia (1970) (derived
it re
24+u?4y? from multivariate Cau-
=1/tan*(rz,) ,v =1/tan?(mz,) chy)
2 2 1 1
1+a (27 -1)(22 ~1)+b (32 ,*-1)(37,°-1) la | 5-2— N 5—8- Kimeldorf and Sampson
(1975)
This 1s about varlous measures of assoclatlon. Construct a bivariate uniform
distributlon for which p=p, =7=0, and X,==¢ (X,) for some functlon ¢
(l.e. X, Is completely dependent on X ,, see e.g. Lancaster, 1963).
Show that for the normal distribution In R2, | p | =p+* =p.
Prove that p==0 implies independence of components (Renyl, 1959).
Recall the deflnition of complete dependence of exerclse 3.4. Construct a
sequence of blvarlate unlform distributlons In which for every n, the second
coordinate 1s completely dependent on the first coordinate. The sequence
should also tend In dlstrlbutlon to the Independent bivariate uniform distri-
butlon (Kimeldorf and Sampson, 1978). Conclude that the notlon of com-
plete dependence is pecullar.

The phenomenon described In exerclse 7 cannot happen for monotone depen-
dent sequences. If a sequence of random blvarlate uniform random vectors In
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which the second component Is monotone dependent on the first component
for all n, tends In distributlon to a random vector, then this new random
vector 1s blvarlate unlform, and the second component Is monotone depen-
dent on the first component (Kimeldorf and Sampson, 1978).

9. One measure of assoclation for blvariate distributions Is
L = sup | P((X,X)EA)-P((X,X)EA) |

= —;- f I f (.'111,372)~f 1($1)f 2(1’2).] d$1d$2 ,

where A 1s a Borel set of R?, X, Is distributed as X ,, but Is independent of
X, f 1s the density of (X,,X,) and f ,,f , are the marginal densltles. The
second equality is valid only If the densitles involved In the right-hand-side
exist. Prove the second equallty (Scheffe, 1947).

10. Nagao and Kadoya (1971) studled the following blvariate exponential den-
sity:

1 %1 T2
1-r 0y Og 2 TT,T,

f (x1,$2) =

0,05(1-1)

‘where r €[0,1) Is a measure of dependence, 0,,05>0 are constants (parame-
ters), and I, Is a modified Bessel function of the first kind. Obtaln the
parameters of the marginal exponential distributions. Compute the correla-
tlon coefficlent p. Flnally Indicate how you would generate random vectors
in uniformly bounded expected time.

11. Show that the property of comprehenslveness of a blvarlate family is invarl-
ant under strictly monotone transformatlons of the coordinate axes (Kimel-
dorf and Sampson, 1975).

12. Show that Plackett's blvarlate famlly with parameter a >0 Is comprehen-
sive. Show In particular that Frechet's extremal distributions are attained
for a@ ==0 and ¢ —oo, and that the product of the marginals is obtalned for
a=1.

13. Show that the standard bivarlate normal family (l.e., the normal distribution
in the plane) with varlable correlation Is comprehensive.

14. Show that Morgenstern’s bivarlate familly Is not comprehensive.

15. Conslder the Johnson-Tenenbeln family of Example 3.4, with parameter
¢ €[0,1]. Let U and V have uniform [0,1] densities.

A. Find H such that the distribution is bivarlate uniform. Hint: H s par-
abolle on [0,6] and ([1-b,1], and linear In between, Wwhere
b =min(c ,1-¢c ).

B. Find p,7and p, as a function of ¢ . In particular, prove that

_ 2
4¢ -5¢ 0<c<-1—
8(1-c )? 2
"= ) 11e26c+1 1 '
———— —_—l e L1
8¢ 2 2
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18.

17.

18.

19.

10c -13c¢ 2
it & L o<ec <L
10(1-¢ )? 2
py = 3 2 .
3¢ 16¢ “-11 2
+18¢ ¢t -}-<c <1
10c?® 2 .

Conclude that all nonnegative values for p, 7 and py are achlevable by
adjusting ¢ (Johnson and Tenenbeln, 1981).

Show that for Gumbel’'s blvarlate exponential family with parameter
a €[0,1], the correlation reaches a minimum for ¢ =1, and this minimum Is
—0.40365.... Show that the correlation Is a decreasing function of ¢, taking
the maximal value 0 at a =0.

Consider the following palr of random varlables: B\E ,+S E,,0.E ,+S,E,
where P (5; =1)=1-P (S; =0)=1-4; (+=1,2) and E [,E, are 11d exponential
random varlables (Lawrance and Lewls (1983)). Does thls family contaln one
of Frechet’s extremal dlstributlons? '

Compute PPy and 7 for the blvarlate exponentlal distribution of Johnson
and Tenenbelg (19E81), deflned as the distributlion of
2

2

E ,,log((1-¢c)e “+ce ° )+log(1-2¢) where ¢ €[0,1) and E ,E, are ld
exponentlal random variables.

Schmelser and Lal (1982) proposed the followlng method for generating a
blvariate gamma random vector: let G,,G,,G 5 be Independent gamma ran-
dom varlables with respectlve parameters a ,,a,,65, let U,V be an indepen-
dent blvarlate unlform random vector with V=U or V=1-U, let F,
denote the gamma distributlon function with parameter b, and let b,,6, be
two nonnegative numbers. Deflne

(XI;XQ) = (Fbx—'l(U)"'G1+G3,Fb2_1(V)+G2+G3) .

A. Show that thls random vector Is blvarlate gamma.

B. Show constructively that the flve-parameter family 1s comprehenslve,
l.e. for every possible comblnation of specified marginal gamma dlstribu-
tlons, give the values of the parameters needed to obtaln the Frechet
extremal distributions and the product distribution. Indicate also
whether V=U or V==1-U is needed each time.

C. Show that by varying the five parameters, we can cover all theoretlcally
possible combinations for the correlation coefficlent and the marginal
gamima parameters.

D. Constder the simplified three parameter model
(X X)) = (Fy UG F 7NV
for generating a bivariate gamma random vector with marginal parame-

ters (o;,a,) and correlation p. Show that thls famlily Is stili comprehen-
stve. There are two equatlons for the two free parameters (b, and a,).
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Suggest a good numerlcal algorithm for finding these parameters.

20. A bivariate Poisson distribution. (X,,X,) Is sald to be bivarlate Polsson

21.

22,

23.

with parameters Aj,A,, g, When It has characteristic function
it

Bt yy) = oM DL By

A. Show that this Is Indeed a blvariate Polsson distribution.

B. Apply the trivariate reduction principle to generate a random vector
with the glven distribution.

C. (Kemp and Loukas, 1978). Show that we can generate the random vec-
tor as (£+ W ,X,) where X, 1s Polsson (A\;+X3), and glven X,, Z,W
are independent Polsson (\;) and binomlal (X, z/(\,+X;)) random
variables. Hint: prove this via generating functions.

The Johnson-Ramberg bivariate uniform farnily. Let U,,U, U, be

11d uniform [0,1] random variables, and let 6 >0 be a parameter of a family

of blvarlate uniform random vectors defined by
L 1
U Ul -bU, U, U U -bU, U,
1-b ’ 1-b '

Thls construction can be consldered as trivariate reduction. Show that the
full range of nonnegative correlations Is possible, by first showing that the
correlation Is

 b%(2b%4+9b +86)

(145 )2(142b )(2+b)
Show also that one of the Frechet extremal distributions can be approxi-
mated arbitrarily closely from within the famlly. For b =1, the defining for-

mula 1s Invalld, By what should 1t be replaced? (Johnson and Ramberg,
1977)

Conslder a famlly of univarlate distributlon functions {1-(1-F)% , a >0},
where F 1s a distributlon function. Famlilles of this form are closed under

(Xl’XQ) = (

. the operation min(X,,X,) where X,,X, are Independent random varlables

with parameters a ,,a,: the parameter of the minimum Is a ,+a,. Use this to
construct a blvarlate family via trlvariate reduction, and compute the corre-
latlons obtalnable for blvarlate exponentlal, geometric and Welbull distribu-
tlons obtained in this manner (Arnold, 1987).

The bivariate Hermite distribution. A unlvariate Hermite distribution
{p; ;1 >0} with parameters a,b >0 is a distribution on the nonnegative
Integers which has generating functlon (defined as Y p; s ")

h
e o(s ~1)+b (s%1) ‘

The bivariate Hermite distributlon with parameters a; >0, 1=1,2, ...,5,
1s deflned on all palrs of nonnegatlve Integers and has blvarlate generating
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function (defined as F (s lx‘s 2X2) where (X ,,X,) Is a blvariate Hermlte ran-
dom vector)

e G 1)tays 1)+ 05(80-1)+0 (8 2-1)+ a5(s,85-1)

(Kemp and Kemp (1965,1966); Kemp and Papageorglou (1978)).

A. How can you generate a unlvarlate Hermlte (a,b ) random variate using
only Polsson random varlates in uniformly bounded expected time?

B. Gilve an algorithm for the efficlent generatlon of blvariate Hermite ran-
dom varlates. Hint: derlve first the generatlng functlon of
(X +X3,X,+X,) where X,,X,,X, are Independent random varlables
with generating functlons ¢,,¢,,9 5.

This exerclse Is adapted from Kemp and Loukas (1978).
24. Wrlte an algorithm for computing the probabilities of a bilvariate dlscrete

distributlon on {1,2, ..., K }* with specified marginal distributlons, and
achleving Frechet's Inequality. Repeat for both of Frechet's extremal distri-
butlons. :

4. THE DIRICHLET DISTRIBUTION.

4.1. Definitions and properties.

Let ay, ..., @, be positive numbers, Then (X,, ..., X;) has a Diri-
chlet distribution with parameters (@y, -« ) G yy) denoted
Xy ..., Xg)~D(a,, ..., a4, If the jolnt distributlon has density

[(@y . om)=ce" g N 1ma )

over the /c-dlmenslonall simplex S defilned by the- Inequalltles

;>0 (+=1,2,...,k), 3 z;<1l. Here ¢ Is a normalization constant. Basl-
i=1
cally, the X;'s can be thought of as a;-spaclngs In a unlform sample of slze Z‘aj
If the a;’'s are all positive integers. The only novelty Is that the a;’'s are now
allowed to take non-Integer values. The Interested reader may want to refer back
" to sectlon V.2 for the propertles of spacings and to sectlon V.3 for generators.
The present sectlon 1s only a refinement of sorts.
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Theorem 4.1.

Let Y,, ..., Y., be Independent gamma random varlables with parame-
ters @, >0 respectively. Define Y=¥1Y; and X;=Y,/Y (i=12, ..., k).
Then (X, ..., Xy)~D(a,, ..., a4, and (X,, ..., X;) Is Independent of
Y.

Conversely, Iif Y is gamma (3Ja;), and Y Is Independent of
(X, ..., Xg)~D (alk Ce O gg) then the random variables
YX,,. .., YX,,Y(1-3 X;) are Independent gamma random varlables with

f =1
parameters a,, . . ., G ;.

Proof of Theorem 4.1.
The Joint denslity of the Y;'s is

k1t
f Wy o) =c [Ty e
f=1

where ¢ Is a normalization constant. Conslder the transformation

y=Y)x;=y;/y (1 <k), which has as reverse transformation
u

k
v; =yz; (1 <k),yp,=y (1= 3] 7;). The Jacoblan of the transformation 1s y*.
t=1

Thus, the Joint density of ¥, X ,, ..., X} )1Is

k1
k e -1 k G y1-1 2 a,~1
g(y.xy, ..., )=c¢ ]z, (@@= z;) y'= eV .

i =1 =1

This proves the first part of the Theorem. The proof of the second part is omit-

ted. i

Theorem 4.1 suggests a generator for the Dirlchlet distribution via gamma
generators. There are important relationships with the beta distribution as well,
which are reviewed by Wilks (1962), Altchison (1963) and Basu and Tiwarl
(1982). Here we will just mentlon the most useful of these relationships.
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Theorem 4.2.

Let Y,, ..., Y, be Independent beta random varlables where Y; Is beta
(a;+@; .yt -+ 4y). Then (X, ..., X))~ D(ay, ..., a,) where the X;’s
are deflned by

i-1
X,‘ = Y; H Yj .
i=1

Conversely, when (X,,...,X;)~D(a,, ..., a ;) then the random
varlables Y,, . . ., Y, deflned by

Y, X
o 1-X,— =X

are Independent beta random varlables with parameters given In the first state-
ment of the Theorem.

Theorem 4.3.

Let Y,,...,Y, be Independent random varlables, where Y; Is beta
(ay+ - - +a;,0;,,) for 1 <k and Y, Is gamma (a;+ - -+ +a; ). Then the fol-
lowilng random varlables are Independent gamma random varlables with parame-

ters @, . . ., a:

k |
X, =0-YIlY; (=12....k).

j=i

To avold trivialitles, set Y ,=0.

Conversely, when Xl, C e, Xk are independent gamma random variables
with parameters a, . . ., g, then the Y;'s defined by
Y, = ;(lf — _:;il (=12, ..., k-1)
and
Y, =X+ +X,
are Independent. Here Y; s beta (a 4+ - - - +4;,0¢; ) for 1 <k and Y, Is gamma

(@ + - +ap)

The proofs of Theorems 4.2 and 4.3 do not differ substantlally from the
proof of Theorem 4.1, and are omlitted. See however the exerclses. Theorem 4.2
tells us how to generate a Dirichlet random vector by transforming a sequence of
beta random varlables. Typically, this Is more expensive than generating a Dirl-
chlet random vector by transforming a sequence of gamma random varlables, as
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1s suggested by Theorem 4.1. .
Theorem 4.2 also tells us that the marginal distributions of the Dirichlet dis-

tributlon are all beta. In particular, when (X, . .., X} )~ D(a,, ..., a.,),
then X; Is beta (a;, 3] a;). '
J#i

Theorem 4.1 tells us how to relate Independent gammas to a Dirichlet ran-
dom vector. Theorem 4.2 tells us how to relate independent betas to a Dirlchlet
distribution. These two connectlons are put together In Theorem 4.3, where
independent gammas and betas are related to each other. This offers the exciting
possibility of using simple transformations to transform long sequences of gamma
random varlables Into equally long sequences of beta random variables. Unfor-
tunately, the beta random varlables do not have equal parameters. For example,
consider £ 11d gamma (e ) random variables X, . . ., X; . Then the second part
of Theorem 4.3 tells us how t0 obtain independent random variables distributed
as beta (a,a ), beta (2a,a), . . ., beta ((k-1)a ,a ) and gamma (ka ) random vari-
ables respectively. When ¢ ==1, thls reduces 1o a well-known property of spaclngs
glven in section V.2,

We also deduce that BG ,(1-B )G are Independent gamma (¢ ), gamma (b)
random varlables when G is gamma (¢ +b) and B s beta (a,b) and Indepen-
dent of G . In particular, we obtain Stuart’s theorem (Stuart, 1962), which glves
us a very fast method for generating gamma (¢ ) random varlates when a <1: a
gamma (@ ) random varlate can be generated as the product of a gamma (a +1)
random varlate and an independent beta (a,1) random varlate (the latter can be
obtalned as e /% where E 1s exponentlally dls‘orlbuted).

4.2. Liouville distributions.

Sivazllan (1981) Introduced the class of Liouvllle distributlons, which gen-
erallzes the Dlrichlet distributions. These dlstributlons have a density on R*
glven by

c«p(zk;x,.)ﬁx,»“‘*l (2;>0,4=1,2, ..., k),

§ =1 =1

where 9 1s a Lebesgue measurable nonnegative function, a 1+ -+, @ are positive
constants (parameters), and ¢ 1s a normalization constant. The functional form
of ¥ 1s not fixed. Note however that not all nonnegative functions 7 can be sub-
stituted In the formula for the denslty because the Integral of the unnormalized
density has to be flnite. A random vector with the density glven above iIs sald to
be Liouville L (v,a,, . . ., @y ). Stvazllan (1981) calls this distribution a Liou-
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ville distribution of the first kind.

Example 4.1. Independent gamma random variables.

When X,, ..., X} are Independent gamma random variables with parame-
ters ay, ..., g, then (X, ..., X )1sLy(e ™ ,ay, ..., q) I

Example 4.2.

A random varlable X with density ¢ ¥(z)z®™* on [0,00) 1s L ,(¥,a). This
famlly of distributlons contalns all densitles on the positive halfline.

We are mainly Interested In generating random varlates from multlvariate
Liouvllle distributlons. It turns out that two key Ingredlents are needed here: a
Dirichlet generator, and a generator for unlvariate Llouville distributions of the
form glven In Example 4.2. The key property 1s given in Theorem 4.4.
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—

Theorem 4.4. (Sivazlian, 1981)

The normalization constant ¢ for the Liouville Ly (v,a,, . . ., a; ) denslty Is
glven by

k
P( Z ai)

f=1

ﬁ T(a;) [z )z dz

f=1 0

k
where ¢ = Y q;.
1=1
Let (X,,...,Xy)be Ly(a,, ..., ) andlet (Y, ..., Y,) be defined
by ‘
X

Y., = ’ 1<i<k),
X+ X (153 <k)

Yk =X1++Xk .

Then (Y,, ..., Y,_,) 1s Dirichlet (kal, ..., a), and Y, Is independent of this
Dirichlet random vector and L (4, ) ¢;).

i=1
Conversely, If (Y, ..., Y;_;) 1s Dirlchlet (al,k. ..,0a), and Y, Is
Independent of this Dirlchlet random vector and L (%, 3 a; ), then the random
vector (X,, . . ., X} ) deflned by -
X, =YY, @<li<k),

Xk = (1—Y1— ct -Yk-—l)Yk .
IsLy(hay, ..., a)

Proof of Theorem 4.4.
The constant ¢ is given by

1 o0 o0 k k -
—=[ [USe) %" de, - - dy
¢ 0 0 {=1 f=1
k
I10(a;) o
=l.il7c___f¢(x)x“"1 dz ,
.P(Eaz') 0
=1

where a property of Llouvllle multiple Integrals Is used (Slvazlian, 1981). This
proves the first part of the Theorem. .
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Assume next that (X,,...,X;) s Ly(¥a, ...,aq), and that
(Y,, ..., Y,) s obtalned vla the transformatlon glven In the statement of the

Theorem. This transformation has Jacoblan Yk"“. The Jolnt density of
(Y, ..., Y)1s

- k-1 oop,, k71 et
ey Yy ) TT (v e )™ ((1—}3 Yi ) )"

f =1 =1

_ k-1 k-1 . k-1
=cPy ) T Ty T - y) (y; 20(t=12, ..., k-1), 3y, <1).

f=1 =1 =1

a; -1

In thls we recognlze the product of an L ,(%,a’) denslty (for Y} ), and a Dirlchlet

(ay, ..., a) density (for (Y, ..., Y,_,)). This proves the second part of the
Theorem.

For the third part, we argue stmlilarly, starting from the last density shown
above. After the transformation to (X, ..., X, ), which has Jacoblan

k
(3 X; )%, we obtaln the L, (¥,a,, . . ., a; ) density again. |Jj

t=1

Dirichlet generators are described In sectlon 4.1, while L ,(4,a) generators
can be handled Individually based upon the particular form for 4. Slnce thls Is a

unlvarlate generatlon problem, we won't be concerned wlth the assoclated prob-
lems here.

4.3. Exercises.
1. Prove Theorems 4.2 and 4.3.

2. Prove the following fact: when (‘kX’-i}i ..., Xg)~D(ay, ..., a4, then
Xy o, Xi)~D(ay, ..., 8, 3 a;)i<k.
J=i+1
3. The generalized Liouville distribution. A random vector (X,, ..., X})
s generallzed Liouvllle (Slvazllan, 1981) when It has a denslty which can be
written as

koox; b, k 2 -1 S
cP( 3 (—)) I (z; 20) .

f=1 “1 i=1
Here a;,b;,c; >0 are parameters, ¥ s a nonnegative Lebesgue measurable
function, and ¢ Is a normalizatlon constant. Generallze Theorem 4.4 to thls
distributlon. In particular, show how you can generate random vectors with
thls distributlon when you have a Dirlchlet generator and an L ,(,a) gen-
erator at your dlsposal.
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4. In the proof of Theorem 4.4, prove the two statements made about the Jaco-
blan of the transformation.

5. SOME USEFUL MULTIVARIATE FAMILIES.

5.1. The Cook-Johnson family.

Cook and Johnson (1981) conslder the multlvariate uniform distribution
deflned as the distributlon of

X X,) = By Ei
( Vo d)—((1+T) :’(1+-_‘S—') )9

where F,, ..., E; are 11d exponential random varlables, S Is an Independent
gamma (@) random varlable, and ¢ >0 Is a parameter. This famlly Is Interesting
from a varlety of polnts of view:

A. Random varlate generation s easy.

B. Many multlvariate distributions can be obtalned by approprlate monotone
transformations of the components, such as the multlvariate logistic distribu-
tion (Satterthwalte and Hutchinson, 1978; Johnson and Kotz, 1872, p. 291),
the multivarlate Burr distribution (Takahasl, 1965; Johnson and Kotz, 1972,
p. 289), and the multlvarlate Pareto distribution (Johnson and Kotz, 1972,
p. 288).

C. TFor d==2, the full range of nonnegatlve correlations can be achieved. The
independent blvarlate uniform distribution and one of Frechet's extremal
distributions (correspondling to the case X ,=X,) are obtalnable as limits.
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Theorem 5.1.

The Cook-Johnson distribution has distribution function

-a
1

d ——
F(zy,...,z5)= |z °-(d-1) (0<z; <1,1=1,2,...,d)

=1

and denslity

f@y, . . ., 0y)=———=T]2 °

I'(a)a? [y

I'(a+d) ¢ 'l‘ll i -= ]

O0<z;<1,i=12,...,d).

The distribution Is Invarlant under permutations of the coordinates, and 1s mul-
tlyarlate uniform. Furthermore, as a —oo, the distribution functlon converges to
I z: (the independent case), and as a |0, 1t converges to min(z,, . . ., z;) (the

i=1
totally dependent case).

Proof of Theorem 5.1.

The distributlon function 1s derlved without difficulty. The density Is
obtalned by differentiation. The permutatlon invarlance follows by Inspectlon.

The marginal distribution function of the first component 1s F (z,,1, . . . , )=z,
for 0<x1§1. Thus, the distributlon Is multivariate uniform. The limit of the dis-
tribution  functlon as alo Is min(z,, . . ., Tz ). Similarly, for
o<min(z,, ..., zy)<max(z,, ..., z5)<1l, as a —o0,
g _los(z) -
F(zy,...,55)= | e * —(d-1)
§ =1
d log(z; ) -¢
= | Sa-— 0 @)
i=1

-a

d
log(TT =;)
f==1

= 1—-—-————+O(a‘2)]
a

d
log(TT ) d
=]

~ e ' =H$i .
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Let us now turn to a collection of other distributlons obtalnable from the

Cook-Johnson famlily with parameter a by slmple transformations of the X;'s.
Some transformatlons to be applled to each X; are shown In the next table.

Transformation for Parameters Resulting distribution Reference
X
-1
-log(X; “-1) Gumbel's  bivariate | Satterthwaite and
logistic (d==2) and | Hutchinson (1978),
the multivariate | Johnson and Kotz
logistic (@ =1) (1972, p. 291)
1 —
(d; (X; °-1)) é ¢ ,d; >0 multivariate Burr Takahasi  (1965),
Johnson and Kotz
(1972, p. 286)
1
aX; ¢ a; >0 multivariate Pareto Johnson and Kotz
(1972, p. 286)
dNX;) None. & is the nor- | multivariate normal | Cook and Johnson
mal distribution | without elliptical | (1981)
function. contours

Example 5.1. The multivariate logistic distribution.

In 1961, Gumbel proposed the bivarlate logistic distribution, a speclal case of
the generallzed multivariate logistic distribution with distribution function

[1+zd]e"z‘)-a

f ==l

(z;>0,1=1,2,...,d).

For a =1 this reduces to the multivariate logistic distribution given by Johnson
and Kotz (1972, p. 2983). Note that from the form of the distribution function, we
can deduce Immediately that all univarlate and multivariate marginals are agaln
multlvariate logistic. Transformation of a Cook-Johnson random variate leads to
the following simple recipe for generating multivarlate logistic random varlates:

Multivariate logistic generator

Generate iid exponential random variates E,, . . ., Ey,,.
E E,
RETURN (log(——), - - - , log(—=—)) I
E¢p ™ By
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Example 5.2.

The multlvariate normal distribution In the table has nonelliptical contours.
Kowalsk! (1973) provides other examples of multlvarlate normal distributions
with nonnormal densitles. JJj

5.2. Multivariate Khinchine mixtures.

Bryson and Johnson (1882) proposed the famlily of distributlons defined con-
structlvely as the distributions of random vectors in R ¢ which can be written as

(Z, Uy, ..., 24Uy)

where the Z,, . . ., Z; 1s Independent of the multivariate uniform random vector
U, ..., U;, and has a distribution which Is such that certain glven marginal
distributions are obtained. Recalllng Khinchine's theorem (sectlon IV.8.2), we
note that all marglnal distributions have unlmodal densities.

Controlled dependence can be Introduced In many ways. We could lntroduce
dependence In U,, . . ., U; by picking a multlvariate uniform distribution based
upon the multlvarlate normal density or the Cook-Johnson distribution. Two
models for the Z;'s seem natural:

A. The ldentical model: Z = - - =Z,.
B. The Independent model: Z,, . .., Z; are lid.

These models can be mixed by choosing the identical model with probablilty
p and the independent model with probabllity 1-p.

Example 5.3.

To achleve exponential marginals, we can take all Z;'s gamma (2). In the
ldentlecal bivarlate model, the jolnt blvarlate denslty s

B -t
f Z—at.

max(z,,29)
In the Independent bivariate model, the Jolnt density Is

T.T _
( -11" 2 )3 2+2(z 4z )+(7 +2 2)e (#rt2)
T1TZg

1
Unfortunately, the correlation In the first model Is 5, and that of the second
model 1s —;— By probabllity mixing, we can only cover correlations In the small

range [:—i-,%]. Therefore, it Is useful to replace the independent model by the



604 XI1.5.MULTIVARIATE FAMILIES

totally Independent model (with density e_(z‘”"’)), thereby enlarging the range to

1
[0»'5‘]- |

Example 5.4. Nonnormal bivariate normal distributions.

For symmetric marglnals, 1t is convenlent to take the U,- 's uniform on [-1,1].
It Is easy to see that In order to obtaln normal marginals, the Z;'s have to be dis-
tributed as the square roots of chi-square random varlables with 3 degrees of free-
dom. If (U,,U,) has bivarlate density h on [-1,1], then (Z,U,,Z,U,) has JoInt
density

* 3 A i 1 Y11 ¥
TY(2)2 2¢ Zh(—d—m =424t .
(2) (2+2t 2+2t)

max(|z,},]z2])

This provides us with a rich source of examples of blvariate distributions with
normal marginals, zero correlations and non-normal densitles. At the same time,
random varlate generation for these examples is trivial (Bryson and Johnson,

1982). [}

5.3. Exercises.

1. The multivariate Pareto distribution. The unlvariate Pareto denslty
with parameter ¢ >0 Is defined by a/z®*! (z >1). Johnson and Kotz
(1972, p. 286) define a multlvarlate Pareto density on R ¢ with parameter a
by

a(a+1) - (a+d-1)
(55 gi-(d-1)) ¢

t =1

(z; >21,:1=1,2,...,d).

A. Show that the marginals are all univariate Pareto with parameter a .

B. In the bivarlate case, show that the correlation is -1-. Since the marginal
: a

varlance Is finlte If and only If ¢ >2, we see that all correlations

between O and -;— can be achleved.

1 1
C. Prove that a random vector can be generated as (X, ¢, ..., X, °)
where (X, ..., X;) has the Cook-Johnson distribution with par%me-

E d
ter a. Equlvalently, It can be generated as (1+—E1-, e, 1+—-§-),
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where E, ..., E; are 11d exponentlal random varlables, and S s an
Independent gamma (a ) random varlable.

6. RANDOM MATRICES.

6.1. Random correlation matrices.

To test certaln statlstical methods, one should be able to create random test
problems. In several applications, one needs a random correlatlon matrix. Thlis
problem 1s equlvalent to that of the generatlon of a random covarlance matrix 1If
one asks that all varlances be one. Unfortunately, posed as such, there are
Ilnfinltely many answers. Usually, one adds structural requirements to the correla-
tlon matrix In terms of expected value of elements, elgenvalues, and distributions
of elements. It would lead us too far to dilscuss all the possibilities in detall.
Instead, we Just klck around a few ldeas to help us to better understand the
problem. For a recent survey, consult Marsaglia and Olkin (1984).

A correlation matrix s a symmetric positive semi-definite matrix with ones
on the dlagonal. It Is well known that if H 1s a d Xn matrix with n >d, then
HH’ 1s a symmetric positive seml-deflnite matrix. To make It a correlation
matrix, 1t 1s necessary to make the rows of H of length one (thls forces the dlago-
nal elements to be one). Thus, we have the followlng property, due to Marsaglia
and Olkin (1984):

Theorem 6.1.

HH’ 1s a random correlation matrix If and only If the rows of H are random
vectors on the unlt sphere of R ™.

Theorem 6.1 leads to a varlety of algorithms. One stilll has the freedom to
choose the random rows of H according to any reclpe. It seems loglcal to take the
rows as Independent uniformly distributed random vectors on the surface of C,,
the unlt sphere of R ", where n >d 1s chosen by the user. For this case, one can
actually compute the explicit form of the marginal distributlons of HH’'. Mar-
saglia and Olkln suggest starting from any d Xn matrix of lid random variables,
and to normallze the rows. They also suggest In the case n=d starting from
lower triangular H, thus saving about 509 of the varlates.

The problem of the generation of a random correlatlon matrix with a glven
set of elgenvalues 1s more difficult. The dlagonal matrix D deflned by

>\1 0 0
0 >\2 0

0 0 >‘d
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has elgenvalues Ay, . . ., Ay. Also, elgenvalues do not change when D 1s pre and
post multiplled with an orthogonal matrix. Thus, we need to make sure that
there exist many orthogonal matrices H such that HDH' 1s a correlation matrix.
Since the trace of our correlation matrix must be d, we have to start with a
matrix D with trace d . For the constructlon of random orthogonal H that satlsfy
the given collectlon of equatlons, see Chalmers (1975), Bendel and Mickey (1978)
and Marsaglla and Olkin (1984). See also Johnson and Welch (1980), Bendel and
Afifl (1977) and Ryan (1980).

In a third approach, designed to obtaln random correlatlon matrices with
glven mean A, Marsaglla and Olkin (1984) suggest forming A+H where H Is a
perturbation matrix. We have

Theorem 6.2.

Let A be a given d Xd correlation matrix, and let H be a random sym-
metric d Xd matrix whose elements are zero on the diagonal, and have zero
mean off the diagonal. Then A+H Is a random correlatlon matrix with expected
value A If and only If the elgenvalues of A+H are nonnegative,

Proof of Theorem 6.2.

The expected value i1s obviously correct. Also, A+H 1s symmetric. Further-
more, the dlagonal elements are all one. Finally, A+H Is posltive seml-definite
when 1ts elgenvalues are nonnegative. .

We should also note that the elgenvalues of A4+H and those of A differ by

at most
A =max(_ /3hi;*, max3y | kb |),
V& iP5

where h;; is an element of H. Thus, If A Is less than the smallest elgenvalue of
A, then A+H is a correlation matrix. Marshall and Olkin (1984) use thls fact to
suggest two methods for generating H:

A. Generate all h,-]- for 1 <j with zero mean and support on [—b,-j,b,-j] where
the b,-j 's form a zero dlagonal symmetric matrix with A smaller than the
smallest elgenvalue of A. Then for ¢ >, define h;;=h ;. Finally, h;;=0.

B. Generate h,o,h,5, ..., hy_; 4 With 2 radially symmetric distribution In or

on the d(d-1)/2 sphere of radlus \/V2 where ) Is the smallest elgenvalue of
A. Deflne the other elements of H by symmetry.
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6.2. Random orthogonal matrices.

An orthonormal .d X d matrix can be considered as a rotatlon of the coordi-
nate axes In R 4. In such a rotatlon, there are d (d-1)/2 degrees of freedom. To
see thls, we look at where the polnts (1,0,0,...,0),...,(0,0,...,0,1) are
mapped to by the orthonormal transformatlon. These polnts are mapped to other
polnts on the unit sphere. In turn, the mapped polints deflne the rotatlon. We
can choose the first polnt (d coordinates). Glven the first polnt, the second polnt
should be In a hyperplane perpendlcular to the line Jolning the origln and the
first polnt. Here we have only d-1 degrees of freedom. Contlnulng In thils
fashlon, we see that there are d (d —~1)/2 degrees of freedom in all.

Helberger (1978) (correction by Tanner and Thisted (1982)) glves an algo-
rithm for generating an orthonormal matrix which Is uniformly distributed. This
means that the first polnt Is uniformly distributed on the unit sphere of R d , that
the second polrft Is uniformly distributed on the unit sphere of R 4 Intersected

with the hyperplane which 1s perpendlcular to the llne from the origln to the first
polant, and so forth.

His algorithm requires d(d +1)/2 Independent normal random varlables,
while the total time 1s O (d®). It Is perhaps worth noting that no heavy matrix
computations are necessary at all If one 1s willing to spend a bit more time. To

d
1llustrate this, conslider performing [2 random rotatlons of two axes, each rota-

tlon keeplng the d —2 other axes fixed. A random rotation of two axes Is easy to
d
2
matrix multipllcations. Lucklly, each matrix s nearly diagonal: there are four
random elements on the Intersections of two glven rows and columns. The
remalnder of each matrix 1s purely diagonal with ones on the dlagonal. This
structure lmplies that the time needed to compute the global (product) rotation
matrix 1s O (d3).

A random uniform rotation of R? can be generated as

X Y
-SY SX

carry out, as we will see below. The global random rotation bolls down to [

where (X ,Y ) Is a polnt uniformly distributed on C,, and S Is a random sign. A
random rotation In R 2 in which the z-axls remalns fixed s

X Yo
-8Y SX o
0O 0 1

Thus, by the threefold combination (l.e., product) of matrices of this type, we can
obtaln a random rotatlon In R% If A, A,,,A ; are three random rotatlons of
two axes with the third one fixed, then the product

'A'12A'23A'13



608 XI.6.RANDOM MATRICES

Is a random rotatlon of R 3.

6.3. Random R X C tables.

A two-way contingency table with r» rows and ¢ columtiis Is a matrix of non-
negative Integer-valued numbers. It Is also called an R X C table. Typlcally, the
Integers represent the frequencies with which a glven palr of Integers 1s observed
In a sample of slze n. The purpose of this section 1s to explore the generation of a
random R X C table with glven sample size (sum of elements) n. Agaln, this Is
an lll-posed problem unless we Impose more structure on 1t. The standard restric-
tlons are:

A. Generate a random table for sample size n, such that all tables are equally
Itkely.

B. Generate a random table for sample size n, with glven row and column
totals. The row totals are called r; ,1<:<r. The column totals are

C; ,1__<_Z. SC .
- Let us Just conslder problem B. In a first approach, we take a ball-ln-urn stra-
tegy. Conslder balls numbered 1,2, . . ., n. Of these, the first ¢, are class one

balls, the next c, are class two balls, and so forth. Think of classes as different
colors. Generate a random permutation of the balls, and put the first 7, balls In
row 1, the next r, balls In row 2, and so forth. Within a given row, class ¢ balls
should all be put In column ¢. This ball-in-urn method, first suggested by Boyett
(1979), takes tlme proportlonal to n, and Is not recommended when n s much
larger than r¢, the slze of the matrix.
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Ball-in~urn method

[NOTE: N is an r X ¢ array to be returned. B (1], ..., B[n] is an auxiliary array.]
Sum «0
FOR j:==1 TO ¢ DO
FOR i:= Sum+1 TO Sum+c¢; DO B[i]«~j
Sum « Sum + ¢;
Randomly permute the array B.
Set N to all zeroes.
Sum +0
FOR ) :=1TO r DO
FOR ¢:= Sum+1 TO Sum+r; DO N[j,B[i]]«N{j,Bli]]+1
Sum + Sum + r;
RETURN N

Patefleld (1980) uses the conditlonal distrlbutlon method to reduce the
dependence of the performance upon n. The conditional distributlon of an entry
N,-j glven the entries In the previous rows, and the previous entries In the same
row ¢ Is given by

P(N;j=k) = _aps

T enchk !
where
o= (ri-3 Nyg),
i<y
B=n-Nrm- tmt X Nud,
m<s m<j l<jim<i
'7=(cj_Eij)!’
m<t

6= Z(CI_ZNmI) b

IS5 m<i

€ = (T{*ZN,’[—/C)! ,
i<y

n=n-NTh-N tn+t 3 Nuy+ Y Npj+k),
m<i m<jJ l<jm<i m <t

¢=(c;= 3 Npj—k ),
m<{

0= E(cl_szl) b

I1>; m<i
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The range for k Is such that all factorlal terms are nonnegative. Although the
expresslon for the condlitlonal probabllitles appears complicated, we note that
quite a blt of regularity Is present, which makes it possible to adjust the partial
sums "on the fly". As we go along, we can quickly adjust all terms. More pre-
cisely, the constants needed for the computation of the probabilities of the next
entry In the same row cah be computed from the previous one and the value of
the current element /V;; In constant time. Also, there Is a slmple recurrence rela-
tlon for the probabllity distributlon as a functlon of k, which makes the distribu-
tlon tractable by the sequentlal Inverslon method (as suggested by Patefleld,
1980). However, the expected time of this procedure is not bounded un!formly In
n for flxed values of r,c.

6.4. Exercises.

1. Let A be a d Xd correlation matrix, and let H be a symmetric matrix. Show
that the elgenvalues of A+H differ by at most A from the elgenvalues of A,
where

A =max( /3 h;;*, max¥ |k |).
o i

2. Generate hjph3, ..., by ¢ With a radlally symmetric distribution In or
on the d (d~1)/2 sphere of radlus A\/v/2 where X s the smallest elgenvalue of
A. Define the other elements of H by symmetry. Put zeroes on the diagonal
of H. Then A+H is a correlatlon matrix when A 1s. Show this.

3. Conslder Patefleld’'s conditional distribution method for generating a random
R X C table. Show the following:

A. The conditional distribution as given in the text 1s correct.

B. (Difficult.) Deslgn a constant expected time algorithm for generating one
element In the r Xc¢ matrlx. The expected time should be uniformly
bounded over all conditions, but with r and ¢ fixed.



