
Chapter Eleven 
MULTIVARIATE DISTRIBUTIONS 

1. GENERAL PRINCIPLES. 

1.1. Introduction. 
In sectlon V.4, we have dlscussed In great detall how one can efflclently gen- 

erate random vectors ln fi wlth radlally symmetrlc dlstrlbutlons. Included In 
that sectlon were methods for generatlng random vectors unlformly dlstrlbuted In 
and on the unlt sphere Cd of R d .  For example, when N . . . , Nd are lid nor- 
mal random varlables, then 

where N =J NI2+ * . . +Nd2 ,  1s unlformly dlstrlbuted on the surface of Cd. 
Thls unlform dlstrlbutlon 1s the bulldlng block for all radlally symmetrlc dlstrlbu- 
tlons because these dlstrlbutlons are all scale mlxtures of the unlform dlstrlbutlon 
on the surface of cd. Thls sort of technlque 1s called a speclal property tech- 
nlque: I t  exploits certaln characterlstlcs of the dlstrlbutlon. What we would llke 
to do here 1s glve several methods of attacklng the generatlon problem for d -  
dlmenslonal random vectors, lncludlng many speclal property technlques. 

The materlal has llttle global structure. Most sectlons can in fact  be read 
lndependently of the other sectlons. In thls lntroductory sectlon several general 
prlnclples are descrlbed, lncludlng the condltlonal dlstrlbutlon method. There 1s 
no analog to the pnlvarlate lnverslon method. Later sectlons deal wlth speclflc 
subclasses of dlstrlbutlons, such as unlform dlstrlbutlons on compact sets, elllptl- 
cally symmetrlc dlstrlbutlons (lncludlng the multlvarlate normal dlstrlbutlon), 
blvarlate unlform dlstrlbutlons and dlstrlbutlons on llnes. 



XI. 1 .GENERAL PRINCIPLES 555 

1.2. The conditional distribution method. 
The condltlonal dlstrlbutlon method allows us to reduce the multlvarlate 

generatlon problem to d univariate generatlon problems, but i t  can only be used 
when quite a bit of information Is known about the dlstrlbutlon. 

Assume that our random vector x has denslty 

f . * I zd)  f i (z i>f  2(%2 I * * ' f d ( z d  Izi ,  . * * I z d - i >  7 

where the f i 's are conditional densities. Generatlon can proceed as follows: 

Conditional distribution method 

FOR i:=1 TO d DO 
Generate x. with density f i ( .  I x,,  . . . , xi-,) . (For i=1, use f 

RETURN x=(x,, . . . , xd ) 

It 1s necessary to know all the condltlonal densities. This 1s equivalent to knowing 
all marglnal dlstrlbutlons, because 

ff("1, * f * I X i )  
f i ( X i  1 3 1 ,  . * . J zi-1) = f ~ - 1 ( ~ 1 ,  - * t zi-1) 

where f T  1s the marginal denslty of the flrst i components, 1.e. the denslty of 
(Xl, * * . 1 xi 1. 

Example 1.1. The multivariate Cauchy distribution. 
The multlvarlate Cauchy denslty f Is given by 

f ( X I =  7 d + i  ' 
c 

(1+I 15 I 1,) 
d +i where c =l?(-)/dd+1)'2. Here I 1 . I 1 1s the standard L ,  Euclldean norm. It  

Is known that XI  1s unlvarlate Cauchy, and that glven x,, . . . , Xi-l, the ran- 

dcm variable Xi 1s dlstrlbuted as T (1+ Xj )/$- z where T has the t dlstrlbu- 

tlon wlth z' degrees of freedom (Johnson and Kotz, 1970). 

2 

i -1 

j = 1  
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Example 1.2. The normal distribution. 

wlth varlance-covarlance matrlx A={ a i j  } where ai j  =E ( x i  X j  ): 
Assume tha t  f 1s the denslty of the zero mean normal dlstrlbutlon on R 2 ,  

In thls case, the condltlonal denslty method yields the followlng algorlthm: 

Conditional density method for normal random variates 

Generate N 1 ,  N2, iid normal random variates. 

XI-NlJ.7; 
a 22a 11-a 21 

a I1 

RETURN (x,,X,) 

Thls follows by notlng that X ,  1s zero mean normal wl h varlance a, , ,  and com- 
putlng the condltlonal denslty of X ,  glven x, as a ratlo of marglnal densltles. 

Example 1.3. 
Let f be the unlform denslty In the unlt clrcle C, of R 2 .  The condltlonal 

denslty method 1s easlly obtalned: 

Generate XI with density 

Generate X2 uniformly on [ -dm,dm].  
l ( x )  = z m  ( I x I 51). R 

RETL.JFtN (X19X2) 
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In all three examples, we could have used alternatlve methods. Examples 1.1 
and 1.2 deal wlth easily treated radlally symmetrlc dlstrlbutlons, and Example 
1.3 could have been handled vla the ordlnary reJectlon method. 

1.3. The rejection method. 
It should be clear that the reJectlon method Is not tled to a partlcular space. 

It can be used In multlvarlate random varlate generatlon problems, and Is prob- 
ably the most useful general purpose technlque here. A few traps to watch out  for 
are worth mentlonlng. Flrst of all, reJectlon from a unlform denslty on a rectan- 
gle of R d  often leads t o  a reJectlon constant whlch deterlorates qulckly as d 
Increases. A case In polnt Is the reJectlon method for generatlng polnts unlformly 
In the unlt sphere of R d  (see sectlon V.4.3). Secondly, unllke In R ' ,  upper 
bounds for certain densltles are not easily obtalnable. For example, the lnforma- 
tlon that f 1s unlmodal with a mode at the orlgln 1s of llttle use, whereas In R ', 
the same information allows us to conclude that f ( x ) < l /  I x I . Slmllarly, com- 
blnlng unlmodallty wlth moment conditlons 1s not enough. Even the fact that f 
1s log-concave Is not sumcient to derive unlversally appllcable upper bounds (see 
sectlon VII.2). 

In general, the design of an efflclent rejectlon method 1s more dlmcult than 
In the unlvarlate case. 

1.4. The composition method. 
The composltlon method 1s not tled to a partlcular space such as R' .  A 

popular technlque for obtainlng dependence from lndegendence Is the followlng: 
deflne a random vector X=(X,, . . . , & ) as (SY, ,  . . . , SYd ) where the Si's 
are lld random varlables, and S 1s a random scale. In such cases, we say that the 
dlstrlbutlon of X 1s a scale mixture. If Y, has denslty f , then X has a denslty 
glven by 

If Y ,  has distribution functlon F = l - G ,  then 

xi d 

i = 1  
P ( X , > X , ,  . . . , xd > X d )  = E (  n G(s)). 
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Example 1.4. The multivariate Burr distribution. 

gamma ( b  ), then (SY , ,  . . . , SYd ) has dlstrlbutlon functlon determlned by 
When Y l  1s Welbull wlth parameter a (1.e. G ( y ) = e - Y '  (y >O)) ,  and S IS 

i = l  
d 

1 

Thls deflnes the multlvarlate Burr dlstrlbutlon of Takahasl (1965). From thls 
relatlon I t  1s also easily seen that all unlvarlate or multlvarlate marglnals of a 
multlvarlate Burr dlstrlbutlon are unlvarlate or multlvarlate Burr dlstrlbutlons. 
For more examples of scale rnlxtures In whlch S 1s gamma, see Hutchlnson 
(1981). 

Example 1.5. The multinomial distribution. 
The condltlonal dlstrlbutlon method 1s not llmlted to contlnuous dlstrlbu- 

tions. For example, conslder the multinomial distribution wlth parameters 
n ,p l ,  . . . , pd where the p i ' s  form a probablllty vector and n 1s a posltlve 
Integer. A random vector ( X I ,  . . . , xd ) 1s multlnomlally dlstrlbuted wlth these 
parameters when 

n !  d . 
p((x1, . . , Xd)=(ii, . , id))  = d n p j f J  n ij! i = 1  

j=1 

d 

j = 1  

( Z j L o ,  j = 1 , ,  . . , d ; C i j = n ) .  

Thls 1s the dlstrlbutlon of the cardlnalltles of d urns lnto whlch n balls are 
thrown at random and lndependently of each other. Urn number j 1s selected 
wlth probablllty pi by every ball. The ball-ln-urn experlment can be mlmlcked, 
whlch leads us to an aigorlthm taklng tlme 0 (n  + d )  and O ( n  +d ). Note how- 
ever that 1, ls blnomlal ( n  ,p l ) ,  and that glven x,, the vector (I2,  . . . , xd ) ls 
multlnomlal (n-X,,q,, . . . , q d )  where q j = p j / ( l - p  l). Thls recurrence relatlon 
1s nothlng but another way of descrlblng the condltlonal dlstrlbutlon method for 
thls case. Wlth a unlformly fast blnomlal generator we can proceed In expected 
tlme 0 ( d  ) unlforinly bounded In n : 



, 
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Multinomial random vector generator 

[NOTE: the parameters n , p  
lative sum of probabilities.] 
Sum -0 
FOR i :=1 TO d DO 

. . . , p d  are destroyed by this algorithm. Sum holds a cumu- 

P i  Generate a binomial (n ,T) random vector X i .  

n +n -Xi 
Sum +- Sum - p i  

For small values of n ,  I t  1s unllkely that  thls algorlthm 1s very competltlve, 
malnly because the parameters of the blnornlal dlstrlbutlon change at every call. 
I 

1.5. Discrete distributions. 
Consider the problem of the generation of a random vector taklng only 

values on d-tuples of nonnegatlve Integers. One of the striking dlfferences wlth 
the contlnuous multlvarlate dlstrlbutlons Is that the d-tuples can be put into 
one-to-one correspondence wlth the nonnegatlve lntegers on the real llne. This 
one-to-one mapplng can be used to apply the lnverslon method (Kemp, 1981; 
Kemp and Loukas, 1978) or one of the table methods (Kemp and Loukas, 1981). 
We say that  the functlon whlch transforms d -tuples lnto nonnegatlve integers 1s 
a coding function. The lnverse functlon 1s called the decoding function. 

Coding functlons are easy to  construct. Conslder d =2. Then we can vlslt all 
2-tuples In the positive quadrant In cross-diagonal fashlon. Thus, flrst we vlslt 
(O,O), then (0,l) and ( l , O ) ,  then (0,2),(1,1) and (2,0), etcetera. Note that we vlslt 
all the integers (i , j )  wlth i +J’ = k  before vlsltlng those wlth i + j  = k  +l. Slnce 
we vlslt k(k-1)/2 %tuples wlth i+j ck, we see that we can take as codlng 
Tunc tlon 

Thls can be generallzed to d -tuples (exerclse 1.4), and a simple decoding function 
exists which allows us to recover (i,j) from the value of h ( i , j )  in time o(1) 
(exercise 1.4). There are other orders of traversal of the 2-tuples. For example, we 
could vlslt 2-tuples In order of lncreaslng values of max(i ,i). 



I 
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In general one cannot vlslt all 2-tuples In order of lncreaslng values of i ,  Its 
flrst component, as there could be an lnflnlte number of 2-tuples wlth the same 
value of i. It 1s lllce trylng t o  vlslt all shelves In a llbraiy, and gettlng stuck In 
the first shelf because I t  does not end. If the second component 1s bounded, as It 
often Is, then the llbrary traversal leads to  a slmple codlng functlon. Let M be 
the maximal value for j . Then we have 

h ( i , j )  = (M+l) i+ j .  

One should be aware of some pltfalls when the unlvarlate connectlon IS 

explolted. Even If the dlstrlbutlon of probablllty over the d-tuples 1s relatlvely 
smooth, the correspondlng unlvarlate probablllty vector 1s often very osclllatory, 
and thus unflt for use In the rejectlon method. ReJectlon should be applled 
almost excluslvely to the orlglnal space. 

The fast table methods requlre a flnlte dlstrlbutlon. Even though on paper 
they can be applled to all Anlte dlstrlbutlons, one should reallze that the number 
of posslble d -tuples In such dlstrlbutlons usually explodes exponentlally wlth d . 
For a dlstrlbutlon on the lntegers In the hypercube {1,2, . . . , n } d ,  the number 
of posslble values 1s n d .  For thls example, table methods seem useful only for 
moderate values of d . See also exerclse 1.5. 

Kemp and Loukas (1978) and Kemp (1981) are concerned wlth the lnvei-slon 
method and its emclency for varlous codlng functlons. Recall that in the unlvarl- 
ate case, lnverslon by sequentlal search for a nonnegatlve Integer-valued random 
varlate X takes expected tlme (as measured by the expected number of comparls- 
ons) E(X)+l. Thus, wlth the codlng functlon h for x,, . . , , xd, we see 
wlthout further work that the expected number of comparlsons Is 

E ( h  ( X I ,  . . . , x, )+l) . 

Example 1.6. 
Let us apply lnverslon for the generatlon of (xl,X2), and let us scan the 

space In cross dlagonal fashlon (the codlng functlon 1s 

h ( i  , j )  = +'-'I + i  ). Then the expected number of comparlsons before 
haltlng 1s 

(i +' 
2 

2 +X,+l) . 

Thls 1s at least proportlonal t o  elther one of the marglnal second moments, and 1s 
thus much worse than one would normally have expected. In fact, ln d dlmen- 
slons, a slmllar codlng functlon leads to  a flnlte expected tlme If and only If 
E (xi )<oo for all i =1, . . . , d (see exerclse 1.6). 
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Example 1.7. 
Let us apply lnverslon for the generatlon of (X,,X,), where O < x , L M ,  and 

let us perform a llbrary traversal (the coding function 1s h (i , j )  = ( M + i ) i  + j ) .  
Then the expected number of comparisons before halting 1s 

E (  (M+l)X,+X,+l) . 

Thls 1s flnlte when only the flrst moments are flnlte, but has the drawback that 
M flgures expllcltly in the complexlty. 

We have made our polnt. For large values of d ,  ordinary generatlon 
methods are often not feaslble because of tlme or space lnemclencles. One should 
nearly always t ry  to convert the problem lnto several unlvarlate problems. This 
can be done by applylng the condltlonal dlstrlbutlon method. For the generatlon 
of X,,X, ,  we flrst generate XI,  and then generate X ,  condltlonal on the glven 
value of XI. Effectlvely, thls forces us to know the marglnal dlstrlbutlon of X ,  
and the Jolnt two-dimenslonal dlstrlbution. The marginal distrlbutlon of X, 1s 
not needed. To see how thls improves the complexltles, conslder using the lnver- 
slon method In both stages of the algorlthm. The expected number of comparls- 
oqs In the generatlon of X ,  glven XI  Is E(X, I X,)+l. The number of comparls- 
ons Iff the generatlon of X ,  is X,+1. Summing and taklng expected values shows 
that the expected number of comparlsons is 

E (X,+X,+2) 
(Kemp and Loukas, 1978). Compare wlth Examples 1.0 and 1.7. 

In the  condltlonal dlstrlbutlon method, we can improve the complexity even 
further by employlng table methods In one, some or all of the stages. If d=2 and 
both components have lnflnlte support, we cannot use tables. If only the second 
component has lnflnlte support, then a table method can be used for XI. This 1s 
the ideal sltuatlon. If both components have flnlte support, then we are tempted 
to apply the table method In both stages. Thls would force us to set up many 
tables, one for each of the posslble values of XI. In that case, we could as well 
have set up one giant table for the entlre distrlbution. Finally, if the flrst com- 
ponent has lnflnlte support, and the second component has flnlte support, then 
the  lqcapablllty of storlng an lnflnlte number of flnlte tables forces us to set up 
the tables as we need them, but the tlme spent doing so 1s prohlbltlvely large. 

If a distrlbution is given in analytlc form, there usually 1s some speclal pro- 
perty whlch can be used In the deslgn of an emclent generator. Several examples 
can be found In sectlon 3. 
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1.6. Exercises. 

1. Conslder the denslty f (z1,z2) = 5z1e-Z122 deflned on the lnflnlte strlp 
0 .2<z ,50 .4  , Osz,. Show that  the flrst component x, 1s unlformly dlstrl- 
buted on [0.2,0.4], and that  glven x,, x, 1s dlstrlbuted as an exponentlal 
random varlable dlvlded by X ,  (Schmelser, 1980). 
Show how you would generate random varlates wlth denslty 2. 

6 
(a: 1 , ~ p z 3 L O )  . 

(l+z,+z2+z3)4 

Show also tha t  x,+x2+x3 has denslty 3z2/(l+z )4 (z Y O )  (Sprlnger, 1979, 
p.87). 
Prove that for any dlstrlbutlon functlon F on R d ,  there exlsts a measurable 
functlon g :[o,l]+R such that g (U) has dlstrlbutlon functlon F ,  where U 
1s unlformly dlstrlbuted on [0,1]. Thls can be consldered as a generallzatlon 
of the lnverslon method. Hlnt: from U we can construct d lld unlform [0,1] 
random varlables by sklpplng blts. Then argue vla condltlonlng. 

3. 

4. Conslder the codlng functlon for 2-tuples of nonnegatlve lntegers (i , j  ) glven 

by h ( i , j )  = (i +.i >(i +j-1> +; +l. 
2 

A. Generallze thls codlng functlon to d -tuples. The generallzatlon should 
be such tha t  all d-tuples wlth sum of the comwnents equal to some 
lnteger k are grouped together, and the groups are ordered accordlng to 
lncreaslng values for k. Wlthln a group, this rule should be applled 
recurslvely to groups of d-1-tuples wlth constant sum. 
Glve the decodlng functlon for the two-dlmenslonal h shown above, and 
lndlcate how I t  can be evaluated In tlme 0 (1) (Independent of the slze 
of the argument). 

5. Conslder the multlnomlal dlstrlbutlon wlth parameters n , p  ,, . . . , p d ,  

B. 

whlch asslgns probablllty 

d 

j = I  
to all d -tuples wlth ij  >O, - 

be N (n ,d ). For Axed n , And a slmple functlon $(d ) wlth the property that  

ij =n . Let the total number of posslble values 

Thls glves some ldea about how qulckly N (n  ,d ) grows wlth d . 
Show that  when a cross-dlagonal traversal 1s followed In d dlmenslons for 
lnverslon by sequentlal search of a dlscrete probablllty dlstrlbutlon on the 
nonnegatlve lntegers of R d ,  then the expected tlme .required by the lnver- 
slon 1s flnlte If and only If E ( X i  )<m for all ' ;=I, . . . , d where 
x , ,  . . . , xd 1s 

6. 

d-dlmenslonal random vector wlth the glven dlstrlbutlon. 
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7. Relationship between multinomial and Poisson distributions. Show 
that the algorlthm glven below In which the sample slze parameter 1s used as 
a mlxlng parameter dellvers a sequence of d Ild Polsson ( A )  random varl- 
ables. 

Generate a Poisson (d  A) random variate N . 
RETURN a multinomial ( N  9 ;I’ . . . , ?) random vector (Xl, . . . , X d ) .  1 1 

Hlnt: thls can be proved by expllcltly computlng the probabllltles, by work- 
lng wlth generatlng functlons, or by employlng properties of Polsson polnt 
processes. 

8. A bivariate extreme value distribution. Marshall and Olkln (1983) 
have studled multlvarlate extreme value dlstrlbutlons In detall. One of the 
dlstrlbutlons consldered by them Is deflned by 

--I -524e 5 -I2)-I1 

P ( X , > S , , X , > ~ , )  = e-(e (a:,3,a:,Lo> 

How would you generate a random varlate with thls dlstrlbutlon? 
Q. Let f be an arbltrary unlvarlate denslty on ( 0 , ~ ) .  Show that 

f (z ,+z2)/(s 1+z2) (z ,>O,z,>O) 1s a blvarlate denslty (Feller, 1971, 
p.100). Exploltlng the structure In the problem to the fullest, how would 
you generate a random vector wlth the glven blvarlate denslty? 

2. LINEAR, TRANSFORMATIONS. THE MULTINORMAL DISTRI- 
BUTION. 

2.1. Linear transformations. 

vector Y deflned as the solution of X=HY has denslty 
When an  R -valued random vector X has denslty f (x), then the random 

s ( y > =  I H I f ( H Y ) , Y E R d  9 

:or all nonslngular d X d  matrlces H. The notatlon 1 H 1 1s used for the absolute 
;’3lue of the determlnant of H. Thls property 1s reclprocal, 1.e. when Y has den- 
‘1tY 9 .  then X=HY has denslty f . 

The llnear transformatlon H deforms the coordinate system. Partlcularly 
::Xxmant Ilnear deformatlons are rotatlons: these correspond to orthonormal ’ r3nsformar:lon matrlces H. For random varlate generatlon, llnear transformatlons 
3re Important In a few specla1 cases: 
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A. The generatlon of polnts 
hyperelllpsolds. 

inlformly dlstrlbuted In d -dlmenslonal slmpllces or 

B. The generatlon of random vectors wlth a glven dependence structure, as 
measured by the covarlance matrlx. 
These two appllcatlon areas are now dealt wlth separately. 

2.2. Generators of random vectors with a given covariance matrix. 
The covarlance matrlx of an R d-valued random vector Y wlth mean 0 1s 

deflned as C=E (n‘) where Y Is consldered a s  a column vector, and Y‘ denotes 
the transpose of Y. Assume flrst that we wlsh to generate a random vector Y 
wlth zero mean and covarlance matrlx C and that we do not care for the tlme 
belng about the form of the dlstrlbutlon. Then, I t  Is always posslble to proceed as 
follows: generate a random vector x wlth d lld components x,, . . . , xd each 
havlng zero mean and unlt varlance. Then deflne Y by Y=HX where H Is a 
nonslngular d X d  matrlx. Note that 

E(Y) = HE(X) = 0 ,  

E(-’) = HE(XX’)H’ = HH’ = C . 

We need a few facts now from the theory of matrlces. Flrst of all, we recall the 
deAnltlon of posltlve deflnlteness. A matrlx A Is posltlve deflnlte (posltlve seml- 
deflnlte) when x’Ax > 0 ( L O )  for all nonzero R -valued vectors x. But we have 

X’CX = E(x’YY’x) = E (  I I X’Y I I ) 2 0 

for all nonzero x. Here I I . I I 1s the standard L norm In R d .  Equallty occurs 
only If the Yi ‘s are llnearly dependent wlth probablllty one, 1.e. x’Y=O wlth pro- 
bablllty one for some x#O. In that  case, Y Is sald to  have dlmenslon less than d .  
Otherwlse, Y 1s sald to have dlmenslon d .  Thus, all covarlance matrlces are posl- 
tlve semldeflnlte. They are posltlve deAnlte If and only If the random vector In 
questlon has dlmenslon d .  

For symmetrlc posltlve deflnlte matrlces E, we can always And a nonslngular 
matrlx H such that 

HH‘ = C . 
In fact, such matrlces can be characterlzed by the exlstence of a nonslngular H. 
We can do even better. One can always And a lower trlangular nonslngular €3 
such that 

HH’ = C . 

We have now turned our problem lnto one of decomposlng a symmetrlc posltlve 
deflnlte matrlx C lnto a product of two lower trlangular matrlces. The algorlthm 
can be summarlzed as follows: 
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Generator of a random vector with given covariance matrix 

[SET-UP] 
Find a matrix H such that HHt=C. 
[GENERATOR] 
Generate d independent zero mean unit variance random variates x,, . . . , x, . 
RETURN Y=HX 

The set-up step can be done In tlme 0 ( d 3 )  as we will see below. Slnce H can 
have up to n(d2) nonzero elements, there Is no hope of generatlng Y In less than 
n(d2). Note also tha t  the dlstrlbutlons of the Xi’s are to  be picked by the users. 
We could take them lld and blatomlc: P (Xl= l )=P  (X,=-l)=-. In tha t  case, 

Y is atomlc wlth up to  2 d  atoms. Such atomlc solutlons are rarely adequate. 
Most appllcatlons also demand some control over the marglnal dlstrlbutlons. But 
these demands restrlct our cholces for X , .  Indeed, If our method Is to be unlver- 
sal, we should choose I,, . . . , lyd In such a way that  all llnear comblnatlons of 
these lndependent random varlables have a given dlstrlbutlon. Thls can be 
assured In several ways, but the cholces are llmlted. To see thls, let us conslder 
lld random variables Xi  wlth common characterlstlc function 4, and assume tha t  
we wish all llnear comblnatlons t o  have the same dlstributlon up to  a scale fac- 
tor. The sum C a j  X j  has characterlstlc function 

1 
2 

d 

j=1 
I1 4 ( a j  t 1 ‘ 

Thls 1s equal to d ( a t )  for some constant a when 4 has certaln functlonal forms. 
Take for example 

d ( t )  = e - I t  l o  

for some cuE(O,2] as In the case of a symmetrlc stable dlstrlbutlon. Unfortunately, 
the only symmetrlc stable distrlbutlon wlth a flnlte varlance 1s the normal dlstrl- 
butlon (a=2). Thus, the property that  the normal distrlbutlon 1s closed under 
the  operatlon ”llnear comblnatlon” Is what makes I t  so attractlve to the user. If 
the user speclfles non-normal marglnals, the Covariance structure 1s much’ more 
dlmcult to enforce. See however some good solutlons for the bivariate case as 
cieveloped In sectlon X . 3 .  

A computatlonal remark about H Is In order here. There Is a simple algo- 
rlthm known as the square root method for flndlng a lower trlangular H with 
HH’ = C (Faddeeva, 1959; Moonan, 1957; Grayblll, 1969). We glve the relatlon- 
\l)!P between the matrlces here. The elements of C are called a i j ,  and those of 
rile lower trlangular solutlon matrix H are called h i j .  
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2.3. The multinormal distribution. 
The standard multinormal distribution on R has denslty 

d i  -- --x'x 
2 f (x) = (277-1 e 

= (2n) e 
d i  

2 
-- - - I  1x1 ( 2  

(xER d ,  . 
Thls 1s the denslty of d lld normal random varlables. When x has denslty f , 
Y=HX has denslty 

g (Y) = 1 H-l I f (H-~Y)  Y€R . 

I I €3-'y I I 2=y'C-1y, whlch glves us the denslty 
But we know that Z=HH', so that I H-' 1 = 1 C l - i ' 2 .  Also, 

-- d -l -lyJ-py 
g ( Y )  = (277-1 I I e (YER I . 

Thls Is the denslty of the multlnormal dlstrlbutlon wlth zero mean and nonslngu- 
lar covarlance matrlx E. We note wlthout work that the i - th  marglnal dlstrlbu- 
tlon 1s zero mean normal wlth varlance glven by the i - th  dlagonal element of C. 
In the most general form of the normal dlstrlbutlon, we need only add a transla- 
tlon parameter (mean) to  the dlstrlbutlon. 

Random varlate generatlon for the normal dlstrlbutlon can be done by the 
llnear transformatlon of d lld normal random varlables descrlbed In the prevlous 
sectlon. Thls lnvolves decomposltlon of C lnto a product of the form HH'. Thls 
method has been advocated by Scheuer and Stoller (1962) and Barr and Slezak 
(1972). Deak (1979) glves other methods for generatlng multlnorinal random vec- 
tors. For the condltlonal dlstrlbutlon method In the case d=2, we refer t o  Exam- 
ple 1.2. In the general case, see for example Scheuer and Stoller (1962). 

An lmportant speclal case 1s the blvarlate multlnormal dlstrlbutlon wlth zero 
mean, and covarlance matrlx 

i 
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where pE[-1,1] 1s the correlatlon between the two marglnal random varlables. It 
1s easy to see that If ( N , , N 2 )  are Ild normally dlstrlbuted random varlables, then 

has the sald dlstrlbutlon. The multlnormal dlstrlbutlon can be used as the start- 
lng polnt for creatlng other multlvarlate dlstrlbutlons, see sectlon XI.3. We wlll 
also exhlblt many multlvarlate dlstrlbutlons wlth normal marglnals whlch are not 
nlultlnormal. To keep the termlnology conslstent throughout thls book, we wlll 
refer to  all dlstrlbutlons havlng normal marglnals as multlvarlate normal dlstrlbu- 
tlons. Multlnormal dlstrlbutlons form only a tlny subclass of the multlvarlate 
normal dlstrl but lons. 

2.4. Points uniformly distributed in a hyperellipsoid. 

matrlx A: I t  1s the collectlon of all polnts yER 
A hyperelllpsold In R 1s deflned by a symmetrlc posltlve deflnlte d X d  

wlth the property that 

.\ random vector unlformly dlstrlbuted In thls hyperelllpsold can be generated by 
9 llnear transformatlon of a random vector X dlstrlbuted unlformly In the unlt 
h-persphere Cd of R d .  Such random vectors can be generated qUlte efflclently 
(see sectlon V.4). Recall that llnear transformatlons cannot destroy unlformlty. 
They can only alter the shape of the support of unlform dlstrlbutlons. The only 
Problem we face 1s that of the determlnatlon of the llnear transformatlon In func- 
t!sn of A. 

Let us deflne Y=HX where H 1s our d X d  transformatlon matrlx. The set 
2edned by 

I'.'rresponds t o  the set 

x'H'AHx 5 1 .  

3:: slnce thls has to colnclde wlth x'x 5 1 (the deflnltlon of Cd ), we note that 

H'AH = I 

"'Jw 1 is the unlt d X d  matrlx. Thus, we need to  take H such that 
-\-' = HH'. See also Rublnsteln (1982). 



568 XI.2 .LINEAR TRANSFORMATIONS 

r 

Theorem 2.1. 

on [0,1]. (Thus, Si 2 0  for all z ' ,  and C S i  =1.) Then 
Let (SI, . . . , Sd+,) be the spaclngs generated by a unlform sample of slze d 

2.5. Uniform polygonal random vectors. 
wlth vertlces vl, . . . , v, 1s the collectlon of all 

polnts In R d  that are obtalnable as convex comblnatlons of vl,  . . . , v,. Every 
polnt x In thls convex polytope can be wrltten as 

A convex polytope of R 

n 
x = aivi 

. 1 = l  

n 

i=1 
for some a ai =l. The set vl ,  . . . , v, 1s mlnlmal for 

the convex polytope generated by I t  when all vi's are dlstlnct, and no vi can be 
wrltten as a strlct convex comblnatlon of the vj's. ( A strlct convex comblnatlon 
1s one whlch has at least one ai not equal to  0 or 1.) 

We say that a set of vertlces vl, . . . , v, 1s In general posltlon If no three 
polnts are on a llne, no four polnts are In a plane, etcetera. Thus, If the set of 
vertlces 1s mlnlmal for a convex polytope .P , then I t  1s In general posltlon. 

A simplex 1s a convex polytope wlth d +1 vertlces In general posltlon. Note 
that d polnts In general posltlon In R deflne a hyperplane of dlmenslon d-1. 
Thus, any convex polytope wlth fewer than d +1 vertlces must have zero d - 
dlmenslonal volume. In thls sense, the slmplex 1s the slmplest nontrlvlal obJect in 

We can deflne a baslc slmplex by the orlgln and d polnts on the posltlve 
coordlnate axes at dlstance one from the orlgln. 

There are two dlstlnct generation problems related to convex polytopes. We 
could be asked to  generate a random vector unlformly dlstrlbuted In a glven 
polytope (see below), or we could be asked to generate a random collectlon of ver- 
tices deflnlng a convex polytope. The latter problem 1s not dealt wlth here. See 
however Devroye (1982) and May and Smlth (1982). 

Random vectors dlstrlbuted unlformly ln an arbltrary slmplex can be 
obtalned by llnear transformatlons of random vectors dlstrlbuted unlformly In 
the baslc slmplex. Fortunately, we do not have to go through the agony of factor- 
lzlng a matrlx as In the case of a glven covarlance matrlx structure. Rather, there 
1s a surprlslngly slmple dlrect solutlon to the general problem. 

. . . , an wlth ai 20, 

R d .  

I 

I-. 
I I 
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Proof of Theorem 2.1. 
Let !3 be the column vector S 

dlstrlbuted In the baslc slmplex I? where 
. . . , Sd . We recall flrst that S 1s unlformly 

B { ( X I ,  . . . , ~ d )  : xi 20, C X ~  <I} - . 
: 

If all vi’s are consldered a s  column vectors, and A Is the matrlx 

[vl-vd+l v2-vd+1 ’ * ’ v d - v d + ~ ]  9 

then we can wrlte X as follows: 
d 

i=1  
x = Vd+l+ (Vi-Vd+l)Si = V d + l f S ’ A  . 

It Is clear that X 1s unlformly dlstrlbuted, slnce I t  can be obtalned by a llnear 
transformatlon of S. The support Supp (X) of the dlstrlbutlon of X 1s the collec- 
tlon of all polnts which can be wrltten as V d + l + a ’ A  where aEB 1s a column vec- 

d + i  
tor. Flrst, assume that xEP. Then, x= C-aivi for some probablllty vector 

a 1, . . . , ad +l .  Thls can be rewrltten as follows: 
: = 1  

d 
X Vd+l+ ai (Vi-Vd+l) = V d + l + a ’ A  

: =1  

where a 1s the vector formed by a 
xE Supp (X). Then, for some column vector aEB , 

. . . , ad. Thus, P & Supp (x). Next, assume 

d 

:=1 
x = V d + l + a ’ A  = Vd+l+ ai (Vi-Vd+l) 

d + i  

i = 1  

= aivi , 

whlch lmplles that x 1s a convex comblnatlon of the vi’s, and thus xEP. Hence 
Supp (X) C P ,  and hence Supp (X)=P, whlch concludes the proof of Theorem 
2.1. 

Example 2.1. Triangles. 

dlstrlbuted In the trlangle defined by vl,v2,v3 of R 2: 

The followlng algorlthm can be used to generate random vectors unlformly 
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Generator for uniform distribution in triangle 

Generate iid uniform [0,1] random variates u ,  v . 
IF U > V  then swap U and V. 
RETURN (UV,+( V-U)v,+(1-V)Vg) 

See also exerclse 2.1. 

Example 2.2. Convex polygons in the plane. 
Convex polygons on R wlth n >3 vertlces can be partltloned lnto n -2 dls- 

Jolnt trlangles. Thls can always be done by connectlng all vertlces wlth a deslg- 
nated root vertex. Trlangulatlon of a polygon 1s of course always posslble, even 
when the polygon 1s not convex. To generate a polnt unlformly In a trlangulated 
polygon, I t  sumces to generate a polnt unlformly In the i - t h  trlangle (see e.g. 
Example 2.1), where the i - th  trlangle 1s selected wlth probablllty proportional to 
Its area. It 1s worth recalllng that the area of a trlangle formed by 
(v 11,' 12),(v21,v22),(2'311032) Is 

We can deal wlth all slmpllces In all Euclldean spaces vla Theorem 2.1. 
Example 2.2 shows that  all polygons In the plane can be dealt wlth too, because 
all such polygons can be trlangulated. Unfortuqately, decomposltlon of d - 
dlmenslonal polytopes lnto d -dlmenslonal slmpllces 1s not always posslble, so that 
Example 2.2 cannot be extended to hlgher dlmenslons. ?'he decomposltlon 1s pos- 
sible for all convex polytopes however. A decomposltlon algorlthm 1s glven In 
Rubln (1984), who also provldes a good survey of the problem. Theorem 2.1 can 
also be found In Rublnsteln (1982). Example 2.2 descrlbes a method used by 
Hsuan (1982). The present methods whlch use decomposltlon and llnear transfor- 
matlons are valld for polytopes. For sets wlth unusual shapes, the grid methods 
of sectlon VIII.3.2 should be useful. 

We conclude thls sectlon wlth the slmple mentlon of how one can attack the 
decomposltlon of a convex polytope wlth n vertlces lnto slmpllces for general 
Euclldean spaces. If we are glven an ordered polytope, Le. a polytope wlth all Its 
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faces clearly ldentlfled, and with polnters to nelghboring faces, then the partltion 
1s trivial: choose one vertex, and construct all simplices conslstlng of a face (each 
face has d vertlces) .and the picked vertex. For selection of a simplex, we also 
need the area of a simplex with vertlces vi , t'=1,2, . . . , d f l .  Thls Is given by 

IAl 
d !  

where A 1s the d X d  matrlx wlth as columns Vl-Vd+I, . . . , ~ d - v d + ~ .  The com- 
plexity of the preprocessing step (decomposltlon, computatlon of areas) depends 
upon m , the  number of faces. It is known that m = O  ( n  L d / 2 J )  (McMullen, 
1970). Since each area can be computed in constant time ( d  1s kept Axed, n 
varles), the set-up time is 0 ( m  ). The expected generatlon time 1s 0 (1) if a con- 
stant tlme selection algorithm Is used. 

The aforementloned ordered polytopes can be obtained from an unordered 
collection of n vertlces in worst-case time 0 (n log(n)+n L(d+1)/21) (Seldel, lQSl),  
and this is worst-case optlmal for even dimensions under some computatlonal 
models. 

2.6. Time series. 
The generation of random tlme series wlth certain speclflc propertles (margi- 

nal distrlbutlons, autocorrelatlon matrlx, etcetera) is discussed by Schmelser 
(1980), Franklln (1965), Prlce (1976), Hoffman (1979), L1 and Hammond (1975), 
Lakhan (1981), Polge, Holllday and Bhagavan (1973), Mikhallov (1974), Fraker 
and Rippy (1974), Bade1 (1979), Lawrance and Lewls (1977, 1980, lQSl) ,  and 
Jacobs and Lewls (1977). 

2.7. Singular distributions. 
Slngular distrlbutlons In R are commonplace. Dlstrlbutlons that put all 

thelr mass on a llne or curve in the plane are slngular. So are dlstrlbutlons that 
Put  all their mass on the surface of a hypersphere of R d .  Computer generation 
of random vectors on such hyperspheres 1s discussed by Ulrlch (1984), who in par- 
tlcular derives an efflclent generator for the Flsher-von Mlses dlstributlon In R d .  

can be given ln many forms. Perhaps the most popular form 1s 
the parametric one, where x=h(z ) and z ER 1s a parameter. An example 1s the 
clrcle In R2, determlned by 

A llne In R 

2 1  = cos(27rz) , 

x 2  = sln(2nz ) . 
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Now, If 2 Is a random varlable and h 1s a Bore1 measurable functlon, then 
X = h ( Z )  1s a random vector whlch puts all Its mass on the llne defined by 
x=h(z) .  In other words, X has a llne dlstrlbutlon. For a one-to-one mapplng 
h:R -+R d ,  which Is also continuous, we can deflne a llne denslty f ( z  ) at the 
polnt x=h(z  ) vla the relatlonshlps 

b 
P(X=h(z) forsome z E [ a , b ] )  = J f  ( z ) $ ( z )  dz (all [ a , b ] ) ,  

a 

h’; 2(z  ) 1s the norm of the tangent of h at z , and hi 1s the 
b 

where $(z)=  

z-th component of h. But slnce thls must equal P ( a  52 5 b )=sg ( z  ) dz where 

g Is the denslty of 2 ,  we see that 
a 

For a unlform llne denslty, we need to  take g proportlonal t o  $. 
As a flrst example, conslder a functlon In the plane determlned by the equa- 

tlon y =x(s ) (0511: 5 l). A polnt wlth unlform llne denslty can be obtained by 
conslderlng the II: -coordinate as our parameter z . This yields the algorlthm 

Generate a random variate x with density e m. 
RETURN (X ,x (X 1) 

Thls could be called the proJectlon method for obtalnlng random varlates 
wlth certaln llne densltles. The converse, proJectlon from a line to the z-axls 1s 
much less useful, slnce we already have many technlques for generatlng real-llne- 
valued random varlates. 

2.8. Exercises. 
1. Conslder a trlangle wlth vertlces v1,v2,v3, and let U , V  be lld unlform [0,1] 

random varlables. 
A. Show that If we set Y+v2+(v,-v2)U, and Xtv,+(Y-v,)V,  then X 1s 

not unlformly dlstrlbuted In the glven trlangle. Thls method 1s mlslead- 
lng, as Y 1s unlforinly dlstrlbuted on the edge (v , ,~ , ) ,  and X 1s unl- 
formly dlstrlbutecl on the llne Jolnlng v1 and Y .  

i I 
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B. Show that  X In part A is unlformly distributed In the sald trlangle If we 
replace V In the algorithm by max(V,V*) where V,V* are lld unlform 
[0,1] random varlables. 

Deflne a simple boolean function which returns the value true if and only If 
x belongs to the a triangle In R 2  wlth three glven vertlces. 
Conslder a trlangle ABC where AB has length one, BC has length 6 ,  and the 
angle ABC 1s 8. Let X be unlformly dlstrlbuted In the triangle, and let Y be 
the lntersectlon of the llnes AX and BC. Let Z be the dlstance between Y 
and B. Show that  z has denslty 

2. 

3. 

1 
( O < z < 6 ) .  

Compare the geometric algorlthm for generating Z given above wlth the 
lnverslon method. 

1/22-22 cos(e)+1 

3. DEPENDENCE. BIVARIATE DISTRIBUTIONS. 

3.1. Creating and measuring dependence. 
In many experlments, a controlled degree of dependence Is required. Some- 

times, users want dlstrlbutlons wlth given marglnals and a glven dependence 
structure as measured wlth some crlterlon. Sometlmes, users know precisely what 
they want by completely speclfylng a multlvarlate dlstrlbutlon. In this section, 
we wlll mainly look at problems In which certaln marglnal dlstrlbutlons are 
needed together wlth a glven degree of dependence. Usually, there are very many 
multlvarlate dlstrlbutlons whlch satisfy the given requlrements, and sometlmes 
there are none. In the former case, we should design generators which are emcient 
and lead to dlstrlbutlons whlch are not unrealistlc. 

For a clear treatment of the subJect, it Is best to  emphasize blvarlate dlstrl- 
butlons. A number of different measures of assoclatlon are commonly used by 
practicing statisticlans. First and foremost Is the correlation coefficient p (also 
called Pearson product moment correlatlon coefflclent) deflned by 

where p1,p2 are the means of X , , X 2 ,  and 01,02 are the correspondlng standard 
devlations. The key properties of p are well-known. When X1,X2 are lndepen- 
dent, p=O. Furthermore, by the Cauchy-Schwarz lnequallty, I t  1s easy to see that 

I p I 51. When LYl=X2, we have p = l ,  and when 1y,=-1Y2, we have p=-1. 
Unfortunately, there are a few enormous drawbacks related to the correlatlon 
coemclent. Flrst, I t  Is only deflned for dlstrlbutlons havlng marglnals wlth flnlte 
variances. Furthermore, i t  is not Invarlant under monotone transformations of 
the coordlnate axes. For example, If we deflne a blvarlate unlform dlstrlbutlon 

1 I 
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wlth a glven value for p and then apply a transformatlon t o  get certaln speclflc 
marglnals, then the value of p could (and usually does) change. And most Impor- 
tantly, the value of p may not be a solld lndlcator of the dependence. For one 
thing, p=O does not lmply Independence. 

Measures of assoclatlon whlch are lnvarlant under monotone transformations 
are in great abundance. For example, there 1s Kendall’s tau deflned by 

7 = 2P ((x,-x,)(x,-x2)>0)-1 
where (X1,X2) and (A‘?,,-X’,) are lld. The lnvarlance under strlctly monotone 
transformatlons of the coordlnate axes 1s obvlous. Also, for all dlstrlbutlons, T 
exlsts and takes values ln [-1,1], and -0 when the components are lndependent 
and nonatornlc. The grade correlation (also called Spearman’s rho or the 
rank correlation) pg 1s deflned as p(Fl(xl),F2(X2)) where p 1s the standard 
correlatlon coefflclent, and F are the marglnal dlstrlbutlon functlons of 
X,,X, (see for example Glbbons (1971)). pg always exlsts, and 1s lnvarlant under 
monotone transformatlons. T and pg are also called ordlnal measures of assocla- 
tlon slnce they depend upon rank lnformatlon only (Kruslcal, 1958). Unfor- 
tunately, 7=0 or pg=O do not lmply lndependence (exerclse 3.4). It would be 
deslrable for a good measure of assoclatlon or dependence that I t  be zero only 
when the components are lndependent. 

The two measures glven below satisfy all our requirements (unlversal 
existence, lnvarlance under monotone transformatlons, and the zero value lmply- 
lng Independence): 
A. The sup correlation (or maxlmal correlatlon) p *  defined by Gebeleln 

(1941) and studled by Sarmanov (1962,1963) and Renyl (1959): 

;ii(x 19x2)  = SUP P ( S  AX l>tS Z(X2N 
where the supremum 1s talcen over all Borel-measurable functlons g l,g , such 
that g l(xl),g2(.X2) have flnlte posltlve varlance, and p 1s the ordlnary corre- 
latlon coemclent. 

B. The monotone correlation p *  lntroduced by Klmeldorf and Sampson 
(1978), whlch 1s defined as 7 except that the supremum 1s talcen over mono- 
tone functlons g l,g only. 
Let us outllne why these measures satisfy our requirements. If p * = O ,  and 

X,,X, are nondegenerate, then X, 1s lndependent of X, (Klmeldorf and Samp- 
son, 1978). Thls 1s best seen as follows. We flrst note that for all s ,t , 

p ( ~ ~ - ~ , ~ ] ( ~ l ) , ~ ( - ~ , ~ ] ( X , ) )  = 0 

P (X, 5 s ,x,5 t ) = P ( X ,  5 s )P (X,5 t ) 9 

because the lndlcator functlons are monotone and p * = O .  But thls lmplles 

whlch In turn lmplles Independence. For 7, we refer t o  exerclse 3.6 and Renyl 
(1959). Good general dlscusslons can be found In Renyl (1959), Kruslral (1958), 
Klmeldorf and Sampson (1978) and Whltt (1976). The measures of dependence 
are obvlously Interrelated. We have dlrectly from the definltlons, 
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There are examples I n  whlch we have equallty between all correlatlon coefflclents 
(multlvarlate nOrmal dlstrlbutlon, exerclse 3.5), and there are other examples In 
whlch there 1s strlct Inequality. It 1s perhaps lnterestlng to note when p *  equals 
one. Thls 1s for example the case when X ,  1s monotone dependent upon x,, 1.e. 
there exlsts a monotone functlon g such that P (X,=g (x,))=l, and xl,x, are 
nonatomlc (Klmeldorf and Sampson (1978)). Thls follows directly from the fact 
that  p *  1s lnvarlant under monotone transformatlons, so that  we can assume 
wlthout loss of generallty that the dlstrlbutlon is blvarlate unlform. But then g 
must be the ldentlty functlon, and the statement is proved, 1.e. p * -  -1. Unfor- 
tunately, p * =1 does not imply monotone dependence. 

For contlnuous marglnals, there 1s yet another good measure of dependence, 
based upon the dlstance between probablllty measures. It 1s deflned as follows: 

L SUP I P ((X19X2)EA >-P ((X,,X,)EA ) I A 

where A 1s a Bore1 set of R 2 ,  -Y2 1s dlstrlbuted as X,, but 1s lndependent of XI, 
/ 1s the  density of and f ,,f are the marglnal densltles. The 
supremum In the deflnltlon of L measures the dlstance between the  glven blvarl- 
ate probablllty measure and the artlflclal blvarlate probablllty measure con- 
structed by taklng the product of the two partlclpatlng marginal probablllty 
measures. The lnvarlance under strlctly monotone transformatlons 1s clear. The 
lntegral form for L 1s Scheffe's theorem In dlsgulse (see exerclse 3.9). It 1s only 
valld when all the glven densltles eslst. 

Example 3.1. 
It 1s clearly posslble to have unlform marglnals and a slngular blvarlate dls- 

trlbutlon (conslder X,=X,). It Is even posslble to And such a slngular dlstrlbu- 
tlon wlth p=pg =O (conslder a carefully selected dlstrlbutlon on the surface of 
#he unlt clrcle; or  conslder -Y2=S-Yl where S takes the values +1 and -1 wlth 
equal probablllty). However, when we take A equal to the support of the slngular 
dlstrlbutlon, then A has zero Lehesgue measure, and therefore zero measure for 
:my absolutely contlnuous probsblllry measure. Hence, L =1. In partlcular, when 
'y2 1s monotone dependent on S,. then the blvarlate dlstrlbutlon 1s slngular, and 
therefore L =I. 
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Example 3.2. 
X , , X ,  are lndependent If and only If L =O. The If part follows from the 

fact  that for all A ,  the product measure of A 1s equal to the glven blvarlate pro- 
bablllty measure of A .  Thus, both probablllty measures are equal. The only if 
part IS trlvlally true. 

In the search for good measures of assoclatlon, there 1s no clear wlnner. Pro- 
bablllty theoretlcal conslderatlons lead us to  favor L over pg ,p* and p. On the 
other hand, as we have seen, approxlmatlng the blvarlate dlstrlbutlon by a slngu- 
lar dlstrlbutlon, always glves L =l. Thus, L 1s extremely sensltlve to even small 
local devlatlons. The correlatlon coemclents are much more robust In that 
respect . 

We wlll assume that what the user wants 1s a dlstrlbutlon wlth glven abso- 
lutely contlnuous marglnal dlstrlbutlon functlons, and a glven value for one of 
the transformatlon-Invariant measures of dependence. We can then construct a 
blvarlate unlform dlstrlbutlon wlth the glven measure of dependence, and then 
transform the coordlnate axes as In the unlvarlate lnverslon method to  achleve 
glven marglnal dlstrlbutlons (Nataf, 1962; Klmeldorf and Sampson, 1975; Mardla, 
1970). If we can choose between a famlly of blvarlate unlform dlstrlbutlons, then 
I t  1s perhaps posslble to  plck out the unlque dlstrlbutlon, if I t  exlsts, wlth the 
glven measure of dependence. In the next sectlon, we wlll deal wlth blvarlate unl- 
form dlstrlbutlons In general. 

3.2. Bivariate uniform distributions. 
We say that a dlstrlbutlon 1s blvarlate unlform (exponentlal, gamma, nor- 

mal, Cauchy, etcetera) when the unlvarlate marglnal dlstrlbutlons are all unlform 
(exponentlal, gamma, normal, Cauchy, etcetera). Dlstrlbutlons of thls form are 
extremely lmportant In mathernatlcal statistics In the context of testlng for 
dependence between components. Flrst of all, If the marglnal dlstrlbutlons are 
contlnuous, I t  1s always posslble by a transformatlon of both axes to lnsure that 
the marglnal dlstrlbutlons have any prespeclfled denslty such as the unlform [O,l] 
denslty. If after the transformatlon to  unlformlty the Jolnt denslty 1s unlform on 
[0,112, then the two component random varlables are lndependent. In fact, the 
Jolnt denslty after transformatlon provldes a tremendous amount of lnformatlon 
about the sort of dependence. 

There are varlous ways of obtalnlng blvarlate dlstrlbutlons wlth speclfled 
margfnals from blvarlate unlform dlstrlbutlons, whlch make these unlform dlstrl- 
butlons even more lmportant. Good surveys are provlded by Johnson (1976), 
Johnson and Tenenbeln (1979) and Marshall and Olkln (1983). The followlng 
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theorem comes closest to generallzlng the unlvarlate propertles whlch lead to the 
lnverslon method. 

Theorem 3.1. 
Let ( x , ,X , )  be blvarlate unlform wlth Jolnt denslty g . Let f ,,f , be flxed 

unlvarlate densltles wlth correspondlng dlstrlbutlon functlons F ,,F ,. Then the 
denslty of ( Y 1 , Y 2 )  = (F-11(.X1),F-12(X2)) IS 

f (Y 1 , Y  2) = f 1(Y l)f ,(Y 2)g (F 1 ( Y  ,),F,(Y 2)) . 

Conversely, If (Yl ,Y2)  has denslty f glven by the formula shown above, then 
Y ,  has marglnal denslty f , and Y ,  has marglnal denslty f ,. Furthermore, 
(x,,x,) = (F 1( Y,),F 2( Y,)) 1s blvarlate unlform wlth Jolnt denslty 

Proof of Theorem 3.1. 
Stralghtforward. 

There are many reclpes for cooklng up blvarlate dlstrlbutlons wlth speclfled 
mnrglnal dlstrlbutlon functlons F,,F,. We wlll llst a few In Theorem 3.2. It 
should be noted that If we replace F,(a:,) by z1 and F,(z,) by z 2  In these 
reclpes, then we obtaln blvarlate unlform dlstrlbutlon functlons. Recall also that 
the blvarlate denslty, If I t  exists, can be obtalned from the blvarlate dlstrlbutlon 
functlon by taklng the partlal derlvatlve wlth respect to dz,dz,. 

I I 
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Theorem 3.2. 

following Is a list of bivariate dlstrlbutlon functlons F =F (3: 

ginal dlstrlbutlon functlons F ,  and F,: 

Let F ,=F 1(3: l),F2=F,(3:2) be unlvarlate dlstrlbutlon functlons. Then the 
havlng as mar- 

A. 

B. 

C. 

D. 

E. 

f’ = F1F2(l+a (1--Fl)(1--F2)). Here a €[-1,1] 1s a parameter (Farlle (i960), 
Gumbel (1958), Morgenstern (1956)). Thls wlll be called Morgenstern’s fam- 
ily. 

F =  F 1 F 2  

I-u (1-F ,)(1-F ,) ’ 

Haq (1978)). 

F 1s the solutlon of F (  

Here a E[-1,1] 1s a parameter (All, Mlkhall and 

-F,-F,+F) = a ( F l - F ) ( F , - F )  where a 20 is a 
parameter (Plackett, 1965). 

F =a max(0,F ,+F ,-1)+(l-a )mln(F ,,F ,) where 05 a 5 1 1s a parameter 
(Frechet, 1951). 

(-log(F ))” = (-log(F +(-log(F2))” where rn > - 1 Is a parameter (Gum- 
bel, 1960). 

Proof of Theorem 3.2. 
To verify that F is indeed a dlstrlbutlon functlon, we must verlfy that F 1s 

nondecreaslng In both arguments, and that the limits as x1,x2+--00 and --+m are 
0 and 1 respectively. To verify that  the marginal dlstrlbutlon functlons are 
correct, we need to check that 

and 

1lm F(3:,,3:,) = F,(s,)  . 
2 ,-*m 

The latter relations are easily verlfied. 

It helps to  vlsuallze these reclpes. We begin with Frechet’s lnequalltles 
(Frechet, 1951), which follow by simple geometrlc arguments In the plane: 

i 
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For any two unlvarlate dlstrlbutlon functlons F , , F 2 ,  and any blvarlate dls- 

Theorem 3.3. Frechet's inequalities. 

trlbutlon functlon F havlng these two marglnal dlstrlbutlon functlons, 

max(o,F 1(2 )+F,(Y 1-1) I F (5 9Y 1 5 mln(F,(a: V 2 ( Y  1) . 

Proof of Theorem 3.3. 
For Axed (z , ,z2) In the plane, let us denote by & s ~  ,&NE ,QSW ,QNW the 

four quadrants centered at 2 ,y where equallty 1s resolved by lncludlng boun- 
darles wlth the south and west halfplanes. Thus, ( x , , ~ , )  belongs to QSW whlle 
the vertlcal llne at z belongs to &SW U&NW . It 1s easy to see that at z ,,2 ,, 

Fi(zi)  = P ( & S W U & N W )  9 

F 2 ( ~ 2 )  = ~ ( Q s w U Q S E )  9 

F(z17z2) = ~ ( Q s w ) .  
Clearly, F <mln(F ,,F,) and 1-F < 1-F ,+l-F,. 

These lnequalltles are valld for all blvarlate dlstrlbutlon functlons F wlth 
marglnal dlstrlbutlon functlons F , and F 2 .  Interestlngly, both extremes are also 
valld dlstrlbutlon functlons. In fact, we have the following property whlch can be 
used for the generatlon of random vectors wlth these dlstrlbutlon functlons. 

~ ~~ ~ ~~ ~ ~- ~~ ~ ~- 

Theorem 3.4. 

unlvarlat e dlstrlbut lon funct lons. Then 
Let u be a unlform [0,1] random varlable, and let F , ,  F ,  be contlnuous 

( F - W  )tF-l,(U 

(F--l,(U ),F-l,(l-u 1) 
has dlstrlbutlon functlon mln(F ,,F ,). Furthermore, 

has dlstrlbutlon functlon max(0,F l+F2-l). 
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Frechet’s extremal dlstrlbutlon functlons are those for whlch maxlmal posl- 
tlve and negatlve dependence are obtained respectively. This 1s best seen by con- 
slderlng the blvarlate unlform case. The upper dlstrlbutlon functlon mln(s ,,$ ,) 
puts Its mass unlformly on the 45 degree dlagonal of the flrst quadrant. The bot- 
tom dlstrlbutlon functlon max(O,sl+s,-l) puts Its mass unlformly on the -45 
degree dlagonal of [0,112. Hoeffdlng (1940) and Whltt (1976) have shown that 
maximal posltlve and negatlve correlatlon are obtalned for Frechet’s extremal dls- 
trlbutlon functlons (see exerclse 3.1). Note also that maxlmally correlated random 
varlable are very important In varlance reduction technlques In Monte Carlo 
slmulatlon. Theorem 3.4 shows us how to generate such random vectors. We have 
thus ldentlfled a large class of appllcatlons In whlch the lnverslon method seems 
essential (Fox, 1980). For Frechet’s blvarlate famlly (case D In Theorem 3.2), we 
note without work that I t  sufflces t o  conslder a mlxture of Frechet’s extremal dls- 
trlbutlons. This 1s often a poor way of creatlng lntermedlate correlatlon. For 
example, In the blvarlate unlform case, all the probablllty mass 1s concentrated 
on the two dlagonals of [O,1I2. 

The llst of examples In Theorem 3.2 Is necessarlly Incomplete. Other exam- 
ples can be found In exerclses 3.2 and 3.3. Random varlate generatlon Is usually 
taken care of vla the conditional dlstrlbutlon method. The followlng example 
should sufflce. 

Example 3.3. Morgenstern’s family. 
Consider the unlform verslon of Morgenstern’s blvariate famlly wlth parame- 

ter I a I 51 glven by part A of Theorem 3.2. It 1s easy to  see that for thls fam- 
ily, there exlsts a denslty given by 

f (X‘,a:,)  = l + a  (2z1-1)(2s2-1) . 

Here we can generate X ,  uniformly on [0,1]. Glven X , ,  X, has a trapezoidal den- 
slty whlch Is zero outslde [0,1] and varles from 1-a (2X,-1) at 2,=0 to 
l+a  (2X1-1) at s2=1 .  If u ,  V are lld unlform [0,1] random variables, then x, 



XI. 3 .DEPENDENCE 581 

can be generated as 

V 
max( U ,I- a (2X1-1) ) xl+ 

There are other Important conslderatlons when shopplng around for a good 
blvariate unlform famlly. For example, I t  1s useful to have a famlly which con- 
talns as members, or  at least as llmlts of members, Frechet’s extrema1 dlstrlbu- 
tlons, plus the product of the marglnals (the independent case). We wlll call such 
famllles comprehensive. Examples of comprehenslve blvarlate famllles are glven 
In the table below. Note that the comprehenslveness of a famlly Is lnvarlant 
under strlctly monotone transformatlons of the coordinate axes (exercise 3.11), so 
that the marglnals do not really matter. 

Distribution function 

F( l -F i -F ,+F)  = u (Fl-F)(Fz-F) 
where a 30 is a parameter 

a2(1-a ) F- max(o,F 1+F2-1) 

+ min(Fl,F2)+(l-a2)F1F2 
2 

2 1 where I a I 51 is a parameter 

2,*+222-2r212* 

2(1-r9 where 

I r I < I  is a measure of associ- 

1 

2 7 r m  e 

ation 

Reference 

Plackett (1965) 

Frechet (1958) 

Bivariate normal (see e.g. Mardia, 1970) 

From thls table, one can create other comprehenslve famllles elther by monotone 
transformatlons, or by talclng mlxtures. Note that most famllles, lncludlng 
Morgenstern’s famlly, are not comprehenslve. 

Another Issue 1s that of the range spanned by the famlly in terms of the 
values of a given measure of dependence. For example, for Morgenstern’s blvarl- 
ate unlform famlly of Example 3.3, the correlatlon coefflclent is -a /3. Therefore, 
It can take all the values In [--,-I, but no values outside thls lnterval. Needless 1 1  

3 3  
to say, full ranges for certaln measures of assoclatlon are an asset. Typlcally, thls 



582 

goes hand in hand with comprehensiveness. 
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Example 3.4. Full correlation range families. 

marglnal dlstrlbutlon functlons has correlatlon coemclent 
Plackett's blvariate family wlth parameter a > O  and arbltrary continuous 

-(1-a2)-2alog(u ) 

(1-a )2 
P =  7 

which can be shown to take the values l,O,-1 when a + w ,  a=1 and a=O 
respectlvely (see e.g. Barnett, 1980). Slnce p is a continuous functlon of a ,  all 
values of p can be achleved. 

The blvarlate normal famlly can also achleve all posslble values of correla- 
tion. Since for thls famlly, p=p*=T, we also achleve the full range for the sup 
correlatlon and the monotone correlatlon. 

Example 3.5. The Johnson- Tenenbein families. 
Johnson and Tenenbeln (1981) proposed a general method of constructlng 

blvarlate familles for whlch T and pg can attaln all possible values In (-1,l). The 
method conslsts slmply of taklng (X,,X,)=( U , H  (cU+(l-c ) V ) ) ,  where U ,  V 
are lld random varlables wlth common dlstrlbutlon functlon F ,  c E[O,l] 1s a 
welght parameter, and H 1s a monotone functlon chosen in such a way that 
H (cU+(l-c ) V )  also has distrlbutlon functlon F . To take a slmple example, let 
U , V  be lld normal random variables. Then we should take 
H (u  )=u / d m .  The resultlng two-dimensional random vector 1s easily 
seen to  be blvarlate normal, as I t  is a linear comblnatlon of lld normal random 
varlables. Its correlatlon coemclent is 

which can take all values in [0,1]. Moreover, 
6 C 

7r 
pg = -arcsin( 

2 C 
T = -arcsin( 

7r d m )  - 
It is easy to  see that these measures of assoclation can also take all values In [O,l] 
when we vary c . Negative correlatlons can be achieved by conslderlng 
(-U,H (cU+(1-c ) V ) ) .  Recall next that T and pg are lnvariant under strlctly 
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monotone transformatlons of the coordlnate axes. Thus, we can now construct 
blvarlate famllles wlth speclfled marglnals and glven values for p ,  or T. 

3.3. Bivariate exponential distributions. 
We wlll take the blvarlate exponentlal dlstrlbutlon as our prototype dlstrlbu- 

tlon for lllustratlng Just how we can construct such dlstrlbutlons dlrectly. At the 
same tlme, we wlll dlscuss random varlate generators. There are two very 
dlffere nt approaches: 
A. The analytlc method: one deflnes expllcltly a blvarlate denslty or dlstrlbu- 

tlon functlon, and worrles about generators later. An example Is Gumbel’s 
blvarlate exponentlal famlly (1960) descrlbed below. Another example Is the 
dlstrlbutlon of Nagao and Kadoya (1971) dealt wlth In exercise 3.10. 

B. The emplrlc method: one constructs a pair of random variables known to 
have the correct marglnals, and worrles about the form of the dlstrlbutlon 
function later. Here, random varlate generatlon Is typlcally a trlvlal problem. 
Examples lnclude dlstrlbutlons proposed by Johnson and Tenenbeln (1981), 
Moran (1967), Marshall and Olkln (1967), Arnold (1967) and Lawrance and 
Lewls (1983). 

The dlstlnctlon between A and B Is often not clear-cut. Famllles can also be 
partltloned based upon the range for glven measures of assoclatlon, or upon the 
notion of comprehenslveness. Let us start  wlth Gumbel’s famlly of blvarlate 
exponentlal dlstrlbutlon functlons: 

Here a E [ O , l ]  1s the parameter. The Jolnt denslty 1s 

((1+az l)(l+as,)-a) . e - ~ 1 - ~ ~ a ~ l ~ 2  

Notlce that the condltlonal denslty of X, glven X,=z 1s 

( ( l + a s  , ) ( l + U a :  ,)-a) 
- ( l f a z  1)z2 e 

where k l + a s , .  In thls decomposition, we recognize a mlxture of a gamma (2) 
and a gamma (1) denslty. Random varlates can easlly be generated vla the condl- 
tlonal dlstrlbutlon method, where the condltlonal dlstrlbutlon of X, glven x, can 
be handled by composltlon (see below). Unfortunately, the famlly contalns only 
none of Frechet’s extrema1 dlstributlons, whlch suggests that extreme correlatlons 
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cannot be obtalned. 

Gumbel's bivariate exponential distribution with parameter a 

Generate lld exponentlal random varlates X,,X,. 
Generate a unlform [OJ] random varlate U .  

a LF us- l+aX, 
THEN 

Generate an exponentlal random varlate E .  
X,+X,+E 

Generallzatlons of Gumbel's dlstrlbutlon have been suggested by varlous 
authors. In general, one can start from a blvarlate unlform dlstrlbutlon functlon 
F , and deflne a blvarlate exponentlal dlstrlbutlon functlon by 

. F (l-e-Z1,1-e-22) . 

For a generator, we need only conslder (-log( u),-log( v)) where U ,  V 1s blvarlate 
unlform wlth dlstrlbutlon functlon F .  For example, If we do thls for 
Morgenstern's famlly wlth parameter I a I 51, then we obtaln the blvarlate 
exponentlal dlstrlbutlon functlon 

(1-e -2 1)(l-e-2z)(i+ue-21-22) (s1,z2>0). 

This dlstrlbutlon has also been studled by Gumbel (1960). Both Gumbel's 
exponentlal dlstrlbutlons and other posslble transformatlons of blvarlate uniform 
dlstrlbutlons are often artlflclal. 

In the emplrlc (or constructlve) method, one argues the other way around, 
by flrst denning the random vector. In the table shown below, a sampllng of such 
blvarlate random vectors Is glven. We have taken what we conslder are good 
dldactlcal examples showlng a varlety of approaches. All of them explolt speclal 
properties of the exponentlal dlstrlbutlon, such as the fact that the sum of 
squares of lld normal random variables 1s exponentlally dlstrlbuted, or the fact 
that the mlnlmum of lndependent exponentlal random varlables 1s agaln exponen- 
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t lally dlstrl buted. 
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( P'E 1 + s 1E 21P2E I +  s ZE 1 ) ' 
P (Si =1)=1-P (Si =O)=l-P, ( i  =1,2) 

:ZV1,N3),(N2,NJ iid multinor- 
mal with correlation p 

Reference 

Marshall and Olkin (1967) 

Lawrance and Lewis (1983) 

Johnson and Tenenbein (1981) 

Moran (1967) 

In this table, E,,E2,E3 are lid exponentlal random variates, and X1,X2,X320 are 
parameters wlth X1X2+X3>0. The Ni 's are normal random variables, and c ,p1,P2 
are [O,l]-valued constants. A speclal property of the marginal dlstributlon, closure 
under the operatlon min, 1s exploited In the deflnltlon. To see thls, note that for 
2 >o, 

Thus, X ,  1s exponentlal wlth parameter A,+&. The Jolnt dlstrlbutlon functlon 1s 
unlquely determlned by the functlon G (z ,,z2) deflned by 

-Xlz ,-X2zrA3max(z ' , z2)  G(z1,z2)  = J ? ( X , > z 1 , X 2 > z 2 )  = e 

The dlstrlbutlon 1s a mlxture of a slngular dlstributlon carrylng weight 
1,/(X,+X,+X3), and an absolutely contlnuous part (exerclse 3.6). Also, I t  1s unfor- 
tunate that when ( X , , X 2 )  has the glven blvarlate exponentlal dlstrlbutlon, then 
(a ,X , ,a&, )  Is blvarlate exponentlal In the case u 1 = a 2  only. On the posltlve 
slde, we should note that the famlly lncludes the independent case (x3=O), and 
one of Frechet's extrema1 cases (X,=X,=O>. In the latter case, note that 

The Lawrance-Lewls blvarlate exponentlal Is Just one of a long llst of blvarl- 
ate exponentlals constructed by them. The one glven In the table Is partlcularly 
flexlble. We can qulckly verify that the  marglnals are exponentlal vla charac- 
terlstlc functions. The characterlstlc functlon of X, 1s 

4(t ) = E ( e  itx') = E ( e  Pi itE 1 >(p,+(1-p,>~ ( e  itE2)) 

- 1 (1-PJ 1 (O,+-) = - , - 
1-it p, 1-zt 1-it 
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The correlatlon p=2p1(1-p2)+/?2(1-p1), valld for 0</?,5/?2< 1, can take all 
values between 0 and 1. To create negative correlatlon, one can replace E,,E,  In 
the formulas for X2 by two other exponentlal random varlables, h (E,) ,h ( E 2 )  
where h (5 )=-log(1-e -' ) (Lawrance and Lewls, 1983). 

The Johnson and Tenenbeln constructlon 1s almost as slmple as the 
Lawrance-Lewls constructlon. Interestlngly, by varylng the parameter c , all pos- 
slble nonnegatlve values for pg , 7 and p are achlevable. 

Flnally, In Moran's blvarlate dlstrlbutlon, good use 1s made of yet another 
property of exponentlal random varlables. Hls dlstrlbutlon has correlatlon p2 
where p 1s the correlatlon of the underlying blvarlate normal dlstrlbutlon. Agaln, 
random varlate generatlon 1s extremely slmple, and the correlatlon spans the full 
nonnegatlve range. Dlfflcultles arlse only when one needs to compute the exact 
value of the density at some polnts, but then agaln, these same dlmcultles are 
shared by most emplrlc methods. 

3.4. A case study: bivariate gamma distributions. 
We have seen how blvarlate dlstrlbutlons wlth any glven marglnals can be 

constructed from blvarlate unlform dlstrlbutlons or blvarlate dlstrlbutlons wlth 
other contlnuous marglnals, via transformatlons of the coordlnate axes. These 
transformatlons leave p, ,T and other ordinal measures of assoclatlon lnvarlant, 
but generally speaklng not p.  Furthermore, the lnverslon of the marglnal dlstrlbu- 
tlon functlons ( F  ,,F 2) required to apply these transformatlons 1s often unfeaslble. 
Such 1s the case for the gamma dlstrlbutlon. In thls sectlon we wlll look at these 
new problems, and provlde new solutlons. 

To clarli'y the problems wlth lnverslon, we note that If X1,X2 1s blvarlate 
gamma ( a  , ,a2),  where a; 1s the parameter for xi, then maxlmum and mlnlmum 
correlatlon are obtalned for the Frechet bounds, Le. 

x2 = F2-1(~l(xlN 9 

x, = F 2-1(1-F ,(XI)) 

respectlvely (Moran (1967), Whltt (1976)). Dlrect use of Frechet's bounds 1s possl- 
ble but not recommended If generator emclency 1s Important. In fact, I t  is not 
recommended to start  from any blvarlate unlform dlstrlbutlon. Also, the method 
of Johnson and Tenenbeln (1981) lllustrated on the blvarlate unlform, normal 
and exponentlal dlstrlbutlons In the prevlous sectlons requlres an lnverslon of a 
gamma dlstrlbutlon functlon If I t  were to be applled here. 

We can also obtaln help from the composltlon method, notlng that the ran- 
dom vector (Xl,X,) defined by 

( Y , ,  Y 2 )  ,wlth probablllty p 

,with probablllty 1-p 



XI. 3 .DEPEND EN C E 587 

has the rlght marginal dlstributlons If both random vectors on the rlght hand 
slde have the same marglnals. Also, (x,,x,) has correlatlon coefllclent 
p ~ ~ f ( 1 - p  )pz where p r , p z  are the correlatlon coemclents of the two given ran- 
dom vectors. One typlcally chooses ,or and pz  at the extremes, so that the 
entlre range of p values Is covered by adJustlng p .  For example, one could take 
p y = O  by considering Ild random varlables Y,,Y,. Then p z  can be talcen maxl- 
mal by uslng the Frechet maxlmal dependence as In 
(Z,,Z,) = (21,172-1(1-~1(21)) where 2 ,  Is gamma (a1) .  Doing so leads to a mix- 
ture of a contlnuous distrlbutlon (the product measure) and a slngular dlstylbu- 
tlon, whlch is not deslrable. 

The gamma dlstrlbutlon shares wlth many dlstrlbutlons the property that I t  
Is closed under addltlons of lndependent random varlables. This has led to 
lnverslon-free methods for generatlng blvariate gamma random vectors, now 
known as trivariate reduction methods (Cherlan, 1941; Davld and Flx, 1961; 
Mardla, 1970; Johnson and Ramberg, 1977; Schmeiser and Lal, 1982). The name 
Is borrowed from the prlnclple that  two dependent random varlables are con- 
structed from three lndependent random varlables. The appllcatlon of the princl- 
ple Is certalnly not limited to the gamma dlstributlon, but Is perhaps best lllus- 
trated here. Conslder lndependent gamma random variables G G 2, G wlth 
parameters a 1 9 ~ 2 9 ~ 3 .  Then the random vector 

(X1X2) = (G,+G,,G,+G,) 

Is bivariate gamma. The marglnal gamma dlstrlbutlons have parameters a ,+a 
and a ,+a , respectlvely. Furthermore, the correlatlon Is glven by 

a3 
P =  & 1+a,)(a,+a,) 

If p and the marglnal gamma parameters are specifled beforehand, we have one of 
two situations: either there Is no posslble solution for a ,,a ,, or  there Is exactly 
one solution. The llmltatlon of thls technlque, which goes back to Cherlan (1941) 
(see Schmelser and La1 (1980) for a survey), Is that 

mln( a1 ,a,) 

dGG 0 9 5  

where al,a2 are the marglnal gamma parameters, Wlthln thls range, trlvarlate 
reduction leads to  one of the fastest algorithms known to date for blvsrlate 
gamma dlstrlbutlons. 
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[NOTE: p is a given correlation, a1,a2 are given Parameters for the marginal gamma distri- 
min(a,,au,) 

butions. It is assumed that 0 5 p 5 .I G 
[GENERATOR] 
Generate a gamma ( a l - p G )  random variate G ,. 
Generate a gamma (a2-p&) random variate G 2. 

Generate a gamma ( p a )  random variate G,. 
RETURN ( G  G3,G2+ G,) 

Ronnlng (1977) generallzed thls prlnciple to hlgher dlmenslons, and suggested 
several posslble llnear comblnatlons to achleve deslred correlatlons. Schmelser and 
La1 (1982) (exerclse 3.19) All the vold by extendlng the trlvarlate reductlon 
method In two dlmenslons, so that all theoretlcally posslble correlatlons can be 
achleved In blvarlate gamma dlstrlbutlons. But we do not get somethlng for noth- 
lng: the algorlthm requlres the lnverslon of the gamma dlstrlbutlon functlon, and 
the numerical solutlon of a set of nonllnear equatlons In the set-up stage. 

3.5. Exercises. 
1. Prove tha t  over all blvarlate dlstrlbutlon functlons wlth glven marglnal 

unlvarlate dlstrlbutlon functlons F ,,F 2, the correlatlon coefflclent p 1s 
mlnlmlzed for the dlstrlbutlon functlon max(0,F 1(2 )+F 2(y )-1). It is maxlm- 
lzed for the dlstrlbutlon functlon mln(F 1(2 ),I7,($ )) (Whltt, 1976; Hoeffdlng, 

2. Plackett's bivariate uniform family (Plackett (1965). Conslder the 
blvarlate uniform famlly defined by part C of Theorem 3.2, wlth parameter 
a L O .  Show that  on [0,112, thls dlstrlbutlon has a denslty glven by 

1940). 

a ( a  -l)(z I+$ 1-22 1"2)+" 

f ( 2 1 9 2 2 )  = 312 ' 

( ( ( a  -l)(21+22)+1)2-4a (a-1)2122) 

For thls dlstrlbutlon, Mardla (1970) has proposed the following generator: 

I 
-. 
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Mardia's generator for Plackett's bivariate uniform family 

Generate two iid uniform [0,1] random variables U , V ,  
xl-u 
2 t V ( 1 - V )  

x2- 
2 ~ ( a 2 ~ , + 1 - ~ , ) + a  (1-22 )-(1-2 v)\/a ( a  + ~ z x , ( I - x , ) ( ~ - ~  12) 

a +Z(1-a )2 

RETURN (xl,x2) 

Show that thls algorlthm 1s valld. 
Suggest generators for the followlng blvarlate unlforrn famllles of dlstrlbu- 
tlons: 

3. 

Density 

l + a  ((m +1)slm -l)((n +1)s2"-i) 
' 

2a-1 - 
a (s11-6 +s21-a-1) l-a 

where 
n( 1+ 0 l + v  2, 

2+u2+v2 
u =l/tan2(m 1) ,v =l/tan2(ns2) 

1-i-a (2s ,-i)(2z2-i)+6 (3s 12-1)(35$-1) 

~~ 

Parameter(s) 

a > I  

Reference 

Farlie (1960) 

(derived from multivari- 
ate Pareto) 

Mardia (1970) (derived 
from multivariate Cau- 
chy) 

Kimeldorf and Ssmpson 
(1975) 

4. Thls 1s about varlous measures of assoclatlon. Construct a blvarlate unlforrn 
dlstrlbutlon for whlch p=pg =T=O, and X , = g  (XI) for some functlon g 
(1.e. x2 Is completely dependent on X , ,  see e.g. Lancaster, 1963). 

Show that for the normal dlstrlbutlon In R 2, 1 p I =p * =p. 

Prove that jj=O lmplles independence of components (Renyl, 1959). 

Recall the deAnltlon of complete dependence of exerclse 3.4. Construct a 
sequence of blvarlate unlform dlstrlbutlons In whlch for every n , the second 
coordlnate 1s completely dependent on the flrst coordlnate. The sequence 
should also tend In dlstrlbutlon to the lndependent blvarlate unlform dlstrl- 
butlon (I-Clmeldorf and Sampson, 1978). Conclude tha t  the notlon of com- 
plete dependence I s  pecullar. 
The phenomenon descrlbed In exerclse 7 cannot happen for monotone depen- 
dent sequences. If a sequence of random blvarlate unlform random vectors I n  

- 5 .  

8. 

7. 
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whlch the second component 1s monotone dependent on the Arst component 
for all n ,  tends In dlstrlbutlon t o  a random vector, then thls new random 
vector 1s blvarlate unlform, and the second component 1s monotone depen- 
dent on the A r s t  component (Klmeldorf and Sampson, 1978). 
One measure of assoclatlon for blvarlate dlstrlbutlons 1s 9. 

L = SUP I p ((X,,X,)EA 1-p ((X,,-Y,)EA 1 I 
A 

where A 1s a Bore1 set of R ,, X', 1s dlstrlbuted as X,, but 1s lndependent of 
X , ,  f 1s the denslty of (X1,X2) and f , are the marglnal densltles. The 
second equallty 1s valld only If the densltles lnvolved in the rlght-hand-slde 
exlst. Prove the second equallty (Scheffe, 1947). 

lo. Nagao and Kadoya (1971) studled the followlng blvarlate exponentlal den- 
slty: 

where r€[O,l) 1s a measure of dependence, 0,,a2>0 are constants (parame- 
ters), and Io 1s a modlfled Bessel functlon of the flrst klnd. Obtaln the 
parameters of the marglnal exponentlal dlstrlbutlons. Compute the correla- 
tlon coemclent p. Flnally lndlcate how you would generate random vectors 
In unlformly bounded expected tlme. 

11. Show that the property of comprehensiveness of a blvarlate famlly 1s lnvarl- 
ant under strlctly monotone transformatlons of the coordlnate axes (Klmel- 
dorf and Sampson, 1975). 

12. Show that Plackett's blvarlate famlly wlth parameter a 2 0  1s comprehen- 
slve. Show In partlcular that Frechet's extrema1 dlstrlbutlons are attalned 
for a =O and a +oo, and that the product of the marglnals 1s obtalned for 
a =l. 

13. Show that the standard blvarlate normal famlly (Le., the normal dlstrlbutlon 
in the plane) wlth varlable correlatlon 1s comprehenslve. 

14. Show that Morgenstern's blvarlate famlly 1s not comprehenslve. 
15. Conslder the Johnson-Tenenbeln famlly of Example 3.4, wlth parameter 

Flnd H such that the dlstrlbutlon 1s blvarlate unlform. Hlnt: H 1s par- 
abollc on [O,b] and [l-b ,l], and llnear In between, where 
b = m h (  c ,I-c ). 

c E[O,l]. Let U and v have unlform [O,i]  densltles. 
A. 

B. Flnd p,r and pB as a functlon of c . In partlcular, prove that 

4c -5c 1 o<c <- 
6( 1-c )2 2 

llC2-6C+1 1 
9 

- < c  < 1  
6c 2 

L 



XI.3 .DEPENDENCE 591 

16. 

17. 

18. 

19. 

I 

1OC -13C 1 o < c  <- 
10( l-c )2 2 

3c 3+16c 2 - l l C  +2 1 P g  = 
- < c  < 1  

1oc 2 
I 

Conclude that all nonnegatlve values for p ,  T and pg are achlevable by 
adJustlng c (Johnson and Tenenbeln, 1QSl). 

Show that for Gumbel’s blvarlate exponentlal famlly wlth parameter 
a E[O,l], the correlatlon reaches a mlnlmum for a =1, and thls mlnlmum is 
-0.40365.... Show that  the correlatlon 1s a decreaslng functlon of a ,  talclng 
the maxlmal value 0 at a =o. 
Conslder the following palr of random varlables: PIE ,+S 1E2,P2E2+S2E , 
where P (si =l)=l-P (si =O)=l-@i (i =1,2) and E, ,E ,  are lld exponentlal 
random varlables (Lawrance and Lewls (1983)). Does thls famlly contaln one 
of Frechet’s extremal dlstrlbutlons? 
Compute p,pg and T for the blvarlate exponentlal dlstrlbutlon of Johnson 
and Tenenbeln (1981), deflned as the dlstrlbutlon of 

E,,-log((1-c )e l-c+ce )+log(l-Zc ) where c E[O,l] and E1,E2 are lld 
exponentlal random varlables. 
Schmelser and La1 (1982) proposed the foilowlng method for generatlng a 
blvarlate gamma random vector: let G , ,G2,G,  be lndependent gamma ran- 
dom varlables wlth respectlve parameters a ,,a g , ~  3, let u, V be an lndepen- 
dent blvarlate unlform random vector wlth V = U  or V = l - U ,  let Fb 
denote the gamma dlstrlbutlon functlon wlth parameter 6 ,  and let 6 ,,b be 
two nonnegatlve numbers. Deflne 

E2 -- E2 -- 

(X19X2) = (f’b,-‘(u)+G 1+GpFb2-l(V)+G2+GJ . 

A. Show that  thls random vector Is blvarlate gamma. 
B. Show constructlvely that the flve-parameter famlly 1s comprehenslve, 

1.e. for every posslble comblnatlon of speclAed marglnal gamma dlstrlbu- 
tlons, glve the values of the parameters needed t o  obtaln the Frechet 
extremal dlstrlbutlons and the product dlstrlbutlon. Indlcate also 
whether V=U or V=l -U 1s needed each tlme. 
Show that by varylng the flve parameters, we can cover all theoretlcally 
posslble comblnatlons for the correlatlon coemclent and the marglnal 
gamma parameters . 
Conslder the slmpllfled three parameter model 

C. 

D. 

(x,,x2) = ( F b  ,-I( u )+ l y F  a*-’( >) 

for generatlng a blvarlate gamma random vector wlth marglnal parame- 
ters (a,,a2) and correlatlon p.  Show that thls famlly 1s stlll comprehen- 
slve. There are two equatlons for the two free parameters ( b  and a l). 
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Suggest a good nurnerlcal algorlthm for flndlng these parameters. 
20. A bivariate Poisson distribution. (X1,X2) 1s sald to be blvarlate Poisson 

wlth parameters A1,A,,A,, when I t  has characterlstlc functlon 

A. 

B. 

C. 

Show that thls 1s lndeed a blvarlate Polsson dlstrlbutlon. 
Apply the trlvarlate reductlon prlnclple t o  generate a random vector 
wlth the given dlstrlbutlon. 
(Kemp and Loukas, 1978). Show that we can generate the random vec- 
tor as ( z + w , x 2 )  where x, 1s Polsson (Al+X3), and glven X 2 ,  Z , W  
are lndependent Polsson (A,) and blnomlal (X2,A3/(Al+A,)> random 
varlables. Hlnt: prove thls vla generatlng functlons. 

21. The Johnson-Ramberg bivariate uniform family. Let U 1 , U 2 ,  U ,  be 
lld unlform [ O , l ]  random varlables, and let b 20 be a parameter of a famlly 
of blvarlate unlform random vectors deflned by 

1 - 1 - 
U1U3b -bUl U3 U 2 U 3 b  -bU2 U, 

9 

1- b 1-b 
(X,,X,) = ( 

22. 

23. 

Thls constructlon can be consldered as trlvarlate reductlon. Show that the 
full range of nonnegatlve correlatlons is posslble, by flrst showing that the 
correlatlon 1s 

b 2(2 b 2 + ~  6 +6) 

( i + b  ),(1+2b )(2+b ) 

Show also that one of the Frechet extrema1 dlstrlbutlons can be approxl- 
mated arbltrarlly closely from wlthln the famlly. For b =1, the deflnlng for- 
mula 1s lnvalld. By what should i t  be replaced? (Johnson and Ramberg, 
1977) 

Conslder a family of unlvarlate dlstrlbutlon functlons {l-(l-F)' , a >O}, 
where F 1s a dlstrlbutlon functlon. Famllles of thls form are closed under 
the operatlon mln(X,,X,) where X1,X2 are lndependent random varlables 
wlth parameters a 2: the parameter of the mlnlmum 1s a l+a 2. Use thls to 
construct a blvarlate famlly vla trlvarlate reductlon, and compute the corre- 
latlons obtalnable for blvarlate exponentlal, geornetrlc and Welbull dlstrlbu- 
tlons obtalned In thls manner (Arnold, 1967). 

The bivariate Hermite distribution. A unlvarlate Hermlte dlstrlbutlon 
{ p i  , i 20) wlth parameters a , b  >O Is a dlstrlbutlon on the nonnegatlve 
lntegers whlch has generatlng functlon (deflned as Cpi s ' ) 

1 

e a(s-1)+b(s2-i) 

The blvarlate Hermlte dlstrlbutlon wlth parameters 'ai >O , z =1,2, . . . , 5, 
1s deflned on all palrs of nonnegatlve lntegers and has blvarlate generatlllg 
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functlon (deflned as E (s ,x’s 2x2) where (X, ,X,)  1s a blvarlate Hermlte ran- 
dom vector) , 

a ds I-I)+ a 2( s ?-I)+ a a( s rl)+ a ,(s 1*-1)+ a tj( s e 

(Kemp and Kemp (1965,1966); Kemp and Papageorglou (1976)). 

A. 

B. 

How can you generate a unlvarlate Hermlte ( a  ,b ) random varlate uslng 
only Polsson random varlates In unlformly bounded expected tlme? 
Glve an algorlthm for the efflclent generatlon of blvarlate Hermlte ran- 
dom varlates. Hlnt: derlve Arst the generstlng functlon of 
(x,+x3,X2+x3) where X,,X,,X, are lndependent random varlables 
wlth generatlng functlons g ,,g 2,g 3- 

Thls exerclse 1s adapted from Kemp and Loukas (1978). 

24. Wrlte an algorlthm for computlng the probabllltles of a blvarlate dlscrete 
dlstrlbutlon on {l,Z, . . . , K } 2  wlth speclfled marglnal dlstrlbutlons, and 
achlevlng Frechet’s lnequallty. Repeat for both of Frechet’s extrema1 dlstri- 
b u tlons. 

4. THE DIRICHLET DISTRIBUTION, 

4.1. Definitions and properties. 
Let a,, . . . , ah+, be posltlve numbers. Then ( X , ,  . . . , xk) has a Diri- 

chlet distribution wlth parameters ( a  . . . , ak +J,  denoted 
(xl, . . . , xh ) - D ( a  . . . , ak +1),  If the Jolnt dlstrlbutlon has density 

a 1-1 . . . Zk ak -1 (pJ.,- . . . - x k ) Q + l - l  f (21, - J x k )  = c Z 1  

over the k-dlmenslonal slmplex sk deflned by the lnequalltles 

zi > O  ( i  =1,2, . . . , k ) ,  xi  <l. Here c 1s a normallzatlon constant. Basl- 

cally, the Xi ’s can be thought of as ai -spacings In a unlform sample of slze Eai 
I f  the ai’s are all posltlve Integers. The only novelty 1s that the ai‘s  are now 
allowed to  take non-lnteger values. The lnterested reader may want to refer back 
to sectlon V.2 for the propertles of spaclngs and to  sectlon V.3 for generators. 
The present sectlon Is only a refinement of sorts. 

k 

i = l  
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Theorem 4.1. 
Let Y,, . . . , Yk+1 be lndependent gamma random varlables wlth parame- 

ters ai > O  respectlvely. Deflne Y = C Y i  and X i = Y i / Y  (z‘=1,2, . . . , k). 
Then (Xl, . . . , xk) - D ( a l ,  . . . , and ( X l ,  . . . , xk) IS lndependent of 
Y .  

Conversely, If Y 1s gamma (Ea;), and Y 1s lndependent of 
( X i  , . . . , X k ) N D ( a i ~ . . . , a k + l ) ,  then the random varlables 
Y X , ,  . . . , Yxk , Y ( 1 -  E xi ) are lndependent gamma random varlables wlth 

parameters a 
I =1 

. . . , ak +l. 

Proof of Theorem 4.1. 
The Jolnt denslty of the Yi ’s 1s 

t fl 

where c 1s a normallzatlon constant. Conslder the transformatlon 
= X , x i  = y i  / y  (2’ 5 k ), whlch has a~ reverse transformatlon 

k 

i = 1  

Y l  

y i  = y x i  (z’ 5 k ) , Y k  +l=y ( 1 -  

Thus, the Jolnt denslty of Y , x l ,  . . . , Xk ) 1s 

xi ). The Jacoblan of the transformatlon 1s y . 

k +1 
k k at+l-i C a,-1 

g ( y , x 1 ,  . . . , xk) c r l [ ” i U ’ - l  ( l - x x i )  Y e-y . 
i = I  i = 1  

Thls proves the flrst part of the Theorem. The proof of the second part 1s omlt- 
ted. 

Theorem 4.1 suggests a generator for the Dlrlchlet dlstrlbutlon vla gamma 
generators. There are lmportant relatlonshlps wlth the beta dlstrlbutlon as well, 
which are revlewed by Wlllcs (1962) ,  Altchlson (1963)  and Basu and Tlwarl 
(1982). Here we wlll Just mentlon the most useful of these relatlonshlps. 
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Theorem 4.2. 
Let Y , ,  . . . , Yk be lndependent beta random varlables where Y;: Is beta 

(a; ,ai+,+ * ' +I). Then (XI ,  . . . , xk ) - D ( a  1, , . . , U k  +I) where the x; 'S 
are deflned by 

i -1 

j = 1  
xi = Y; Yj . 

Conversely, when ( X  . . . , xk ) - D ( a  ,, . . . , ak+I) ,  then the random 
varlables Y , ,  . . . , Yk deflned by 

xi 
1-x,- . -1; -1 

Yi = 

are independent beta random varlables wlth parameters glven In the flrst state- 
ment of the Theorem. 

Theorem 4.3. 
Let Y , ,  . . . , Yh be independent random varlables, where Y j  is bet 

( a  ,+ +ak 1. Then the fol 
lowing random varlables are independent gamma random variables wlth parame 

. +a; ,a i+ , )  for i < k  and 'Yk 1s gamma ( a , +  . 

ters u ,, . . . , ak : 
k 

j - i  
xi = (l-Y;-,)J-J Yj ( i = 1 , 2 ,  . . . , k )  . 

To avoid trlvlalltles, set Y,=O. 

wlth parameters a ,, . . . , ak , then the Yi's deflned by 
Conversely, when XI, . . . , xk are independent gamm 

x,+ * . . +xi 
( i = 1 , 2 ,  . . . , k - 1 )  

. * . +xi+, Yi = X I +  

random v rl ble 

are independent. Here Yi 1s beta ( a  ,+ . . . +ai ,a i+ , )  for i < k  and Yk Is gamm 
(a,+ . ' ' +ak). 

~ 

The proofs of Theorems 4.2  and 4.3 do not dlffer substantially from the 
Proof of Theorem 4 . 1 ,  and are omltted. See however the exerclses. Theorem 4.2 
tells us how to generate a Dlrlchlet random vector by transforming a sequence of 
beta random varlables. Typlcally, thls 1s more expenslve than generatlng a Dlrl- 
chlet random vector by transforming a sequence of gamma random varlables, as 
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1s suggested by Theorem 4.1. 

trlbutlon are all beta. In partlcular, when (Xl, . . . , xk ) - D ( a  
then xi 1s beta ( a i ,  

Theorem 4.2 also tells us that the marglnal dlstrlbutlons of the  Dlrlchlet dls- 
. , . , ak +1) ,  

a j  ). 
j # i  

Theorem 4.1 tells us how to  relate lndependent gammas to  a Dlrlchlet ran- 
dom vector. Theorem 4.2 tells us how to  relate lndependent betas t o  a Dlrlchlet 
dlstrlbutlon. These two connectlons are put together In Theorem 4.3, where 
lndependent gammas and betas are related to  each other. Thls offers the excltlng 
posslblllty of uslng simple transformatlons to  transform long sequences of gamma 
random varlables lnto equally long sequences of beta random varlables. Unfor- 
tunately, the beta random varlables do not have equal parameters. For example, 
conslder k lld gamma ( a  ) random varlables x,, . . . , xk . Then the second part 
of Theorem 4.3 tells us how t o  obtaln lndependent random varlables dlstrlbuted 
as beta ( a  ,a ), beta (2a ,a ), . . . , beta ((k -1)a ,a ) and gamma (ka  ) random varl- 
ables respectlvely. When a =1, thls reduces to  a well-known property of spaclngs 
glven In sectlon V.2. 

We also deduce that BG , ( l-B)G are lndependent gamma ( a  ), gamma ( 6  ) 
random varlables when G 1s gamma ( a  +b ) and B 1s beta ( a  ,b ) and lndepen- 
dent of G . In partlcular, we obtain Stuart's theorem (Stuart, 1962), whlch glves 
us a very fa s t  method for generatlng gamma ( a  ) random varlates when a <1: a 
gamma ( a  ) random varlate can be generated as the product of a gamma ( a  +1) 
random varlate and an lndependent beta ( a  ,1) random varlate (the latter can be 
obtalned as e - E / a  where E 1s exponentlally dlstrlbuted). 

4.2. Liouville distributions. 

erallzes the Dlrlchlet dlstrlbutlons. These dlstrlbutlons have a denslty on R 
glven by 

Slvazllan (1981) lntroduced the class of Llouvllle dlstrlbutlons, whlch gen- 

k k 
c $ ( p r j ) p i u c - l  (xi >O - , i=1,2, . . . , I C )  , 

t = l  t = l  

where $ Is a Lebesgue measurable nonnegatlve functlon, a 1, . . . , ak are posltlve 
constants (parameters), and c 1s a normallzatlon constant. The functlonal form 
of ?,b 1s not Axed. Note however that not all nonnegatlve functlons II, can be sub- 
stltuted In the formula for the denslty because the integral of the unnormallzed 
denslty has to  be flnlte. A random vector with the denslty glven above 1s sald to  
be Llouvllle Lk ($,a 1, . . . , ak ). Slvazllan (1981) Calls thls dlstrlbutlon a Liou- 
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ville distribution of the first kind. 

597 

Example 4.1. Independent gamma random variables. 

ters a 
When x,, . . . , & are lndependent gamma random varlables with parame- 

. . . , ak , then ( X , ,  . . . , xk ) is Lk (e-' ,a 1, . . . , ak ). 

Example 4.2. 

family of dlstrlbutlons contalns all densities on the positive halfline. 
A random varlable x wlth denslty c $ ( ~ ) a : ' - ~  on I0,oo) 1s L l($,a ). This 

We are malnly interested In generating random variates from multlvarlate 
Llouville dlstrlbutlons. It turns out that  two key lngredlents are needed here: a 
Dirichlet generator, and a generator for unlvarlate Llouvllle dlstrlbutlons of the 
form given In Example 4.2. The key property Is given in Theorem 4.4. 
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Theorem 4.4. (Sivazlian, 1981) 

glven by 
The normallzatlon constant c for the Llouvllle Lk ($ ,a  . . . , ak ) density ls 

k 
r( ai 1 

1 =1 

03 k 
n r ( a i ) J ~ ( z ) ~ u - - '  cia: 
i = 1  0 

k 
where a = 2 a i .  

i = l  

Let ( X l ,  . . . , xk ) be Lk ($,a 1, . . . , ak ), and let ( Y  1, . . . , Yk ) be deflned 
by 

(15; < I C ) ,  X i  
yi = xl+. . . +Xk 

Yk = xi+ ' ' ' +xk . 

Then ( Y l ,  . . . , Yk-1) is Dlrlchlet ( u l ,  . . . , a k ) ,  and Yk 1s lndependent of thls 

Dlrlchlet random vector and L 
k 

i = 1  
2 ai ). 

Conversely, If ( Y l ,  . . . , Yk-1) 1s Dlrlchlet (a l ,  . . , ak ), and Yk IS 

ai ), then the random 
k 

lndependent of thls Dlrlchlet random vector and L 1($, 

vector ( X l ,  . . . , xk) deflned by 
i = 1  

xi = Yi Yk ( 1 s i < k )  

xk = (1-Yl- ' ' ' -yk -1) yk 

1s Lk ($,a 1, * , ak ) a  

Proof of Theorem 4.4. 

The constant c 1s glven by 

k 
] I T r ( a i )  03 

i =1  
J$(z)xa-1 dz , - - 

k 

i = 1  
. r ( C a i )  O 

where a property of Llouvllle multlple lntegrals 1s used (Slvazllan, 1981) .  Thls 
proves the flrst'part of the Theorem. 
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Assume next that ( X I ,  . . . , & )  Is Lk ($,al, . . . , a,), and that 
( Y l ,  . . . , Yk)  1s obtalned V l a  the transformatlon glven ln the statement of the 
Theorem. Thls transformatlon has Jacoblan Yk The Joint denslty of 
( y l ,  . . J y k )  Is 

Y k  k- l$(yk  n ( Y i  Y k  
k -1 k -I 

Y i  ) Y k  
i = 1  i - 1  

In thls we recognlze the product of an L l($,a ) denslty (for Y ,  ), and a Dlrlchlet 
(a l ,  . . . , a k )  denslty (for (Yl ,  . . . , Yk-1)). Thfs proves the second part of the 
Theorem. 

For the thlrd part, we argue slmllarly, startlng from the last denslty shown 
above. After the transformatlon to ( X I ,  . . . , xk ), whlch has Jacoblan 

( xi >"l, we obtaln the Lk (+,a 
k 

i = 1  
. . . , ak denslty agaln. 

Dlrlchlet generators are descrlbed In sectlon 4.1, whlle L l($,a ) generators 
can be handled lndlvldually based upon the partlcular form for $. Slnce thls Is a 
unlvarlate generatlon problem, we won't be concerned wlth the assoclated prob- 
lems here. 

4.3. Exercises. 
1. Prove Theorems 4.2 and 4.3. 

2. Prove the followlng fact: when ( X I ,  . . . , xk ) - D ( a  1 ,  . . . , ak+1),  then 

(XI, . . . , X i )  - D ( a , ,  . . . , a i ,  
k +I 

ai), i < k .  
j = i  +I 

3. The generalized Liouville distribution. A random vector (Xl, . . . , xk ) 
Is generallzed Llouvllle (Slvazllan, 1981) when I t  has a denslty whlch can be 
wrltten as 

Here a; ,b i  , c i  >O are parameters, $ Is a nonnegatlve Lebesgue measurable 
functlon, and c 1s a normallzatlon constant. Generallze Theorem 4.4 to thls 
dlstrlbutlon. In partlcular, show how you can generate random vectors wlth 
thls dlstrlbutlon when you have a Dlrlchlet generator and an L l(?+!+a ) gen- 
erator at your dlsposal. 
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4. In the proof of Theorem 4.4, prove the two statements made about the Jaco- 
blan of the transformatlon. 

5. SOME USEFUL MULTIVARIATE FAMILIES. 

5.1. The Cook-Johnson family. 

defined as the dlstrlbutlon of 
Cook and Johnson (1981) conslder the multlvarlate unlform dlstrlbutlon 

where E,,  , . . , Ed are lld exponential random varlables, S 1s an lndependent 
gamma ( a  ) random varlable, and a > O  1s a parameter. Thls family 1s lnterestlng 
from a varlety of polnts of vlew: 
A. 

B. 
Random varlate generatlon 1s easy. 
Many multlvarlate dlstrlbutlons can be obtalned by approprlate monotone 
transformations of the components, such as the multlvarlate loglstlc dlstrlbu- 
tlon (Satterthwalte and Hutchlnson, 1978; Johnson and Kotz, 1972, p. 291), 
the multlvarlate Burr dlstrlbutlon (Takahasl, 1965; Johnson and Kotz, 1972, 
p. 289), and the multlvarlate Pareto dlstrlbutlon (Johnson and Kotz, 1972, 
p. 286). 
For d=2, the full range of nonnegatlve correlatlons can be achleved. The 
lndependent blvarlate unlform dlstrlbutlon and one of Frechet’s extrema1 
dlstrlbutlons (correspondlng to  the case x,=x,) are obtalnable as llmlts. 

C. 
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Theorem 5.1. 
The Cook-Johnson dlstrlbutlon has dlstrlbutlon functlon 

and denslty 

( O < q  51, i=1,2, . . . , d )  . 

The distributlon Is lnvarlant under permutations of the coordlnates, and 1s mul- 
tlvarlate unlform. Furthermore, as a +oo, the dlstrlbutlon functlon converges to 

d n xi (the independent case), and as a 10, it  converges to  mln(s,, . . . , xd ) (the 
i =I 
totally dependent case). 

Proof of Theorem 5.1. 
The dlstrlbutlon functlon 1s derlved without dlmculty. The density 1s 

obtalned by dlfferentlatlon. The permutation lnvarlance follows by inspectlon. 
The marginal dlstrlbutlon functlon of the Arst component is F (x 1,1, . , . , l)=x 
for O < x 1 5 1 .  Thus, the dlstrlbutlon 1s multlvarlate unlform. The llmlt of the dis- 
trlbutlon functlon as a 10 is mln(z,, . . . , xd ). Slmllarly, for 
O<mln(z,, . . . , x d ) s m a x ( s l ,  . . . , zd)<1,  as a-+oo, 

I -a  
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Parameters 

c i , d i  >O 

ai B O  

None. Q is the nor- 
mal distribution 
function. 

Let us now turn to a collectlon of other dlstrlbutlons obtalnable from the 
Cook-Johnson famlly wlth parameter a by slmple transformatlons of the Xi 's. 
Some transformatlons to be applled to  each Xi are shown In the next table. 

Resulting distribution Reference 

Gumbel's bivariate Satterthwaite and 
logistic ( d  -2) and Hutchinson (1978), 
the  multivariate Johnson and Kotz 
logistic ( a  =I) (1972, p. 291) 

multivariate Burr Takahasi (1965), 
Johnson and Kotz 
(1972, p. 286) 

multivariate Pareto Johnson and Kotz 

multivariate normal Cook and Johnson 
without elliptical (1981) 
contours 

(1972, p. 286) 

Transformation for 

O-'(X* ) r 
Example 5.1. The multivariate logistic distribution. 

the generallzed multlvarlate loglstlc dlstrlbutlon wlth dlstrlbutlon functlon 
In 1961, Gumbel proposed the blvarlate loglstlc dlstrlbutlon, a speclal case of 

-a  

(1+ 6 e-'.) ( X i  >o , i =1,2, . . . , d )  . 
i ==I 

For a = 1  thls reduces to the multlvarlate loglstlc dlstrlbutlon given by Johnson 
and Kotz (1972, p. 293). Note that from the form of the dlstrlbutlon functlon, we 
can deduce lmmedlately that all unlvarlate and multlvarlate marglnals are agaln 
multlvarlate loglstlc. Transformatlon of a Cook- Johnson random varlate leads to 
the followlng slmple recipe for generatlng multlvarlate loglstlc random varlates: 

Multivariate logistic generator 

Generate iid exponential random variates E , ,  . . . , E d + l .  

RETURN (log(-), . . . , log(-)) 
E ,  Ed 

Ed +I  Ed + I  

I 
I 

_. 
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Example 5.2. 
The multivariate normal distribution in the table has nonelllptfcal contours. 

Kowalskl (1973) provides other examples of multivariate normal distributions 
wlth nonnormal densities. 

5.2. Multivariate Khinchine mixtures. 

structively as the distrlbutlons of random vectors in R 
Bryson and Johnson (1982) proposed the family of distributions deflned con- 

which can be written as 

(ZlU, ,  * * , i d  ud) 
where the z,, , , . , zd is independent of the multivariate uniform random vector 
U , ,  . . . , ud, and has a dlstributlon whlch is such that certain given marginal 
dlstributions are obtalned. Recalllng Khlnchine’s theorem (section rV.S.2), we 
note that all marglnal distrlbutlons have unlmodal densities, 

Controlled dependence can be introduced in many ways. We could lntroduce 
dependence in u,, . . . , ud by picking a multivariate unlform distribution based 
upon the multivariate normal density or the Cook-Johnson distribution. Two 
models for the Zi ’s seem natural: 
A. The ldentlcal model: Z,= . . =zd. 
B. The independent model: z,, . . . , Zd are lid. 

These models can be mixed by choosing the ldentlcal model with probability 
p and the lndependent model wlth probabillty 1-p . 

Example 5.3. 

ldentlcal bivarlate model, the joint bivarlate density is 
To achieve exponential marglnals, we can take all Zi’s gamma (2). In the 

r n a ~ ( 2 ~ . 2 2 )  ‘ 
In the independent bivarlate model, the jolnt density 1s 

1 
2 

Unfortunately, the correlation In the flrst model 1s -, and that of the second 

model 1s -. By probablllty mlxing, we can only cover correlations in the small 1 
3 

1 -1 range [-,-I. Therefore, i t  is useful to replace the lndependent model by the 
3 2  
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totally lndependent model (wlth denslty e -(z1+z2)), thereby enlarging the range to 

Example 5.4. Nonnormal bivariate normal distributions. 
For symmetrlc marglnals, I t  1s convenlent to take the Vi 's  unlform on [-1,1]. 

It 1s easy to see that In order to obtain normal marglnals, the 2;'s have to be dls- 
trlbuted as the square roots of chi-square random varlables wlth 3 degrees of free- 
dom. If (ul;u,) has blvarlate denslty h on [-1,112, then (Z ,U , ,Z ,U , )  has Joint 
denslty 

3 -- -- 1 Y 1  1 Y 2  T1(-)2 2 e  h(-+-,-+-) dt  . 
2 2 2 t  2 2 t  I 

ma( I z 1  I I I 2 2 1  1 

Thls provldes us wlth a rlch source of examples of blvarlate dlstrlbutlons wlth 
normal marglnals, zero correlatlons and non-normal densltles. At the same time, 
random varlate generatlon for these examples 1s trlvlal (Bryson and Johnson, 
1982). 

5.3. Exercises. 
1. The multivariate Pareto distribution. The unlvarlate Pareto denslty 

wlth parameter a >O 1s deflned by a /a:  '+' (a: 2 1 ) .  Johnson and Kotz 
(1972, p. 286) deflne a multlvarlate Pareto denslty on R wlth parameter a 
by 

A. Show that the marglnals are all unlvarlate Pareto wlth parameter a .  
1 
a 

B. In the blvarlate case, show that the correlatlon 1s -. Slnce the marglnal 

varlance 1s flnlte if and only if a >2, we see that all correlatlons 
between 0 and - can be achleved. 1 

2 
1 A -- _- 

C. Prove that a random vector can be generated as (x, ', . . . , xd '1 
where (Xl, . . . , xd) has the Cook-Johnson dlstrlbutlon wlth parame- 

ter a .  Equlvalently, I t  can be generated as (l+- s , .  . * ,  1 + 7  1, El Ed 
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where E , ,  ._ . . , Ed are ild exponentlal random varlables, and S 1s an 
Independent gamma ( a  ) random variable. 

6. RANDOM MATRICES. 

6.1. Random correlation matrices. 
To test certain statlstlcal methods, one should be able to create random test 

problems. In several appllcatlons, one needs a random correlatlon matrlx. Thls 
problem 1s equivalent to that of the generatlon of a random covariance matrlx if 
one asks that all variances be one. Unfortunately, posed as such, there are 
lnflnltely many answers. Usually, one adds structural requirements to the correla- 
tlon matrlx In terms of expected value of elements, eigenvalues, and distrlbutlons 
of elements. It would lead us too far to dlscuss all the posslblllties In detall. 
Instead, we Just kick around a few ideas to help us to better understand the 
problem. For a recent survey, consult Marsaglla and Olkln (1984). 

A correlatlon matrlx 1s a symmetrlc posltlve seml-deflnlte matrlx wlth ones 
on the dlagonal. It Is well known that If H Is a d X n  matrlx wlth n L d ,  then 
HH' Is a symmetrlc posltlve seml-deflnite matrix. To make I t  a correlatlon 
matrlx, I t  1s necessary to make the rows of H of length one (thls forces the dlago- 
nal elements to be one). Thus, we have the followlng property, due to Marsaglla 
and Olkin (1984): 

Theorem 6.1. 

vectors on the unlt sphere of R ' . 
HH' Is a random correlatlon matrix If and only If the rows of H are random 

Theorem 6.1 leads to a varlety of algorithms. One stlll has the freedom to 
choose the random rows of H according t o  any reclpe. It seems loglcal to take the 
rows as Independent uniformly dlstrlbuted random vectors on the surface of C, , 
the unit sphere of R ', where n > d  is chosen by the user. For thls case, one can 
actually compute the expllclt form of the marginal dlstrlbutlons of HH'. Mar- 
saglla and Ollcln suggest starting from any d X n  matrix of lid random varlables, 
and to normallze the rows. They also suggest In the case n = d  startlng from 
lower trlangular H, thus savlng about 50% of the variates. 

The problem of the generation of a random correlatlon matrix with a glven 
set of eigenvalues 1s more dlfflcult. The dlagonal matrlx D deflned by 

1 0 . .  

0 A, . ' .  0 

. . . .  . . . . . . . .  

A d  
0 . . .  0 

I 
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has elgenvalues A,, . . . , A d .  Also, elgenvalues do not change when D 1s pre and 
post multlplled wlth an orthogonal matrlx. Thus, we need to make sure that 
there exlst many orthogonal matrlces H such that HDH’ 1s a correlatlon matrlx. 
Slnce the trace of our correlatlon matrlx must be d ,  we have to  start  wlth a 
matrlx D wlth trace d .  For the construction of random orthogonal H that satisfy 
the glven collectlon of equatlons, see Chalmers (1975), Bendel and Mlckey (1978) 
and Marsaglla and Olkln (1984). See also Johnson and Welch (1980), Bendel and 
Aflfl (1977) and Ryan (1980). 

In a thlrd approach, deslgned to  obtaln random correlatlon matrlces wlth 
glven mean A, Marsaglla and Olkln (1984) suggest formlng A+H where H 1s a 
perturbatlon matrlx. We have 

~ ~- 

Theorem 6.2. 
Let A be a glven d X d  correlatlon matrlx, and let H be a random sym- 

metric d X d  matrlx whose elements are zero o n  the dlagonal, and have zero 
mean off the dlagonal. Then A+H 1s a random correlatlon matrlx with expected 
value A If and only If the elgenvalues of A+H are nonnegatlve. 

Proof of Theorem 6.2. 
The expected value 1s obvlously correct. Also, A+H 1s symmetrlc. Further- 

more, the dlagonal elements are all one. Flnally, A+H 1s posltlve seml-deflnlte 
when Its elgenvalues are nonnegatlve. 

We should also note that the elgenvalues of A t H  and those of A dlffer by 
at most 

A = m a x ( d F  9 m a x ~  I hij I 9 

‘ j  

where hij 1s an element of 33. Thus, If A 1s less than the smallest elgenvalue of 
A, then A+H 1s a correlatlon matrlx. Marshall and Olkln (1984) use thls fact to 
suggest two methods for generatlng H: 
A. Generate all hij for i < j  wlth zero mean and support on [-bij , b i j ]  where 

the bij’s form a zero dlagonal symrnetrlc matrlx wlth A smaller than the 
smallest elgenvalue of A. Then for i > J’ , define hij =hji . Flnally, hi; =o. 

B. Generate hlz ,h13,  . . . , hd-l,d wlth a radlally symmetrlc dlstrlbutlon In or 
on the d (d-1)/2 sphere of radlus A / f i  where A 1s the smallest elgenvalue of 
A. Deflne the other elements of H by symmetry. 

I 

I 
-_ 
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6.2. Random orthogonal matrices. 
An orthonormal d X d  matrlx can be consldered as a rotatlon of the coordl- 

nate axes In R d .  In such a rotatlon, there are d (d-1)/2 degrees of freedom. To 
see thls, we look at where the polnts (1,0,0, . . . , 0), . . . , (O,O, . . . , 0,l) are 
mapped to by the orthonormal transformatlon. These polnts are mapped to other 
polnts on the unlt sphere. In turn, the mapped polnts deflne the rotatlon. We 
can choose the flrst polnt ( d  coordlnates). Glven the flrst polnt, the  second polnt 
should be In a hyperplane perpendlcular to the llne Jolnlng the orlgln and the 
flrst polnt. Here we have only d-1 degrees of freedom. Contlnulng In thls 
fashlon, we see that there are d ( d  -1)/2 degrees of freedom ln all. 

Helberger (1978) (correctlon by Tanner and Thlsted (1982)) glves an algo- 
rlthm for generatlng an orthonormal matrlx whlcb 1s unlformly dlstrlbuted. Thls 
means that the flrst polnt 1s unlformly dlstrlbuted on the unlt sphere of R d ,  that 
the second polnt 1s unlformly dlstrlbuted on the unlt sphere of R d  lntersected 
wlth the hyperplane whlch 1s perpendlcular to the llne from the orlgln to the flrst 
polnt, and so forth. 

Hls algorlthm requires d ( d  +1)/2 lndependent normal random varlables, 
whlle the total tlme 1s O(d3) .  It 1s perhaps worth noting that no heavy matrlx 
computatlons are necessary at all If one is wllllng to spend a bit more tlme. To 

lllustrate thls, conslder performlng [t) random rotatlons of two axes, each rota- 

tlon keeplng the d-2 other axes Axed. A random rotatlon of two axes 1s easy to 

carry out, as we wlll see below. The global random rotatlon bolls down to 

matrlx multlpllcatlons. Lucklly, each matrlx 1s nearly dlagonal: there are four 
random elements on the lntersectlons of two glven rows and columns. The 
remalnder of each matrlx 1s purely dlagonal wlth ones on the dlagonal. Thls 
structure lmplles that the tlme needed to compute the global (product) rotatlon 
matrix IS O ( d 3 ) .  

I :I 

A random uniform rotation of R can be generated as 

where ( X , Y )  1s a polnt unlformly dlstrlbuted on C,, and S 1s a random slgn. A 
random rotatlon In R 3  In whlch the z-axis remains Axed 1s 

x Y o  
-SY sx 0 

0 0 1  

Thus, by the threefold comblnatlon (l.e., product) of matrices of thls type, we can 
obtaln a random rotatlon in R 3 .  If A12,A23,A13 are three random rotatlons of 
two axes wlth the thlrd one Axed, then the product 

A12&23A13 
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1s a random rotatlon of R 3 .  
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6.3. Random R X C tables. 
A two-way contingency table wlth r rows and c columlris 1s a matrlx of non- 

negatlve Integer-valued numbers. I t  1s also called an X C table. Typlcally, the 
lntegers represent the frequencles wlth whlch a glven palr of lntegers 1s observed 
In a sample of slze n . The purpose of thls sectlon 1s to explofe the generatlon of a 
random R X c table wlth glven sample s h e  (sum of elements) n . Agaln, thls is 
an 111-posed problem unless we lmpose more structure on I t .  The standard restrlc- 
tlons are: 
A. Generate a random table for sample slze n ,  such that all tables are equally 

llkely. 
B. Generate a random table for sample slze n ,  wlth glven row and column 

totals. The row totals are called ri ,152 <r . The column totals are 

Let us Just conslder problem B. In a flrst approach, we take a ball-ln-urn stra- 
tegy. Conslder balls numbered 1,2, . , . , n. Of these, the flrst c 1  are class one 
balls, the next c 2  are class two balls, and so forth. Thlnk of classes as dlfferent 
colors. Generate a random permutatlon of the balls, and put the first r balls In 
row 1, the next r 2  balls In row 2, and so forth. Wlthln a glven row, class i balls 
should all be put In column i . Thls ball-ln-urn method, flrst suggested by Boyett 
(1979), takes tlme proportlonal to n ,  and 1s not recommended when n Is much 
larger than rc , the slze of the matrlx. 

ci  , l< iLc .  
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Ball-in-urn niethod 

609 

[NOTE: N is an r X c array to be returned. B [l], . . . , B [n ] is an auxiliary array.] 
Sum e 0  

FOR j : = 1  TO c DO 
FOR i := Sum+l TO Sum+cj DO B [i]+j 
Sum + Sum + c j  

Randomly permute the array B . 
Set N to all zeroes. 
Sum t o  
FOR j:=1 TO r DO 

FOR i :=  Sum+l TO Sum+rj DO N[j,B[i]]-N[j,B[iI]+l 
Sum + Sum + r j  

RETURN N 

Patefleld (1980) uses the condltlonal dlstrlbutlon method to reduce the 
dependence of the performance upon n . The condltlonal dlstrlbutlon of an entry 
Nij glven the entrles In the prevlous rows, and the prevlous entrles In the same 
row i 1s glven by 

where 

1 
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The range for k 1s such that all factorlal terms are nonnegative. Although the 
expresslon for the condltlonal probabllltles appears compllcated, we note that 
qulte a blt of regularlty 1s present, whlch makes I t  posslble t o  adJust the partlal 
sums "on the fly". As we go along, we can qulckly adJust all terms. More pre- 
clsely, the constants needed for the computatlon of the probabllltles of the next 
entry In the same row can be computed from the prevlous one and the value of 
the current element Nij In constant tlme. Also, there 1s a slmple recurrence rela- 
tlon for the probablllty dlstrlbutlon as a functlon of I C ,  whlch makes the dlstrlbu- 
tlon tractable by the sequentlal lnverslon method (as  suggested by PateAeld, 
1980). However, the expected tlme of thls procedure 1s not bounded unlformly In 
n for flxed values of P ,c . 

6.4. Exercises. 
1. Let A be a d X d  correlation matrlx, and let H be a symmetrlc matrlx. Show 

that the elgenvalues of A+H dlffer by at most A from the elgenvalues of A, 
where 

A = max( C h i j  , m a x z  I hij I ) . d7 ' j  

2. Generate h I 2 , h l 3 ,  . . . , h d - l , d  wlth a radlally symmetrlc dlstrlbutlon In or 
on the d ( d - 1 ) / 2  sphere of radlus h / f i  where 1s the smallest elgenvalue of 
A. Deflne the other elements of H by symmetry. P u t  zeroes on the dlagonal 
of H. Then A+H 1s a correlatlon matrlx when A 1s. Show thls. 

Conslder Patefleld's condltlonal dlstrlbutlon method for generatlng a random 
R X C table. Show the followlng: 
A. 
B. 

3. 

The condltlonal dlstrlbutlon as glven in the text 1s correct. 
(Dlmcult.) Deslgn a constant expected tlme algorlthm for generatlng one 
element in the P Xc matrlx. The expected tlme should be unlformly 
bounded over all condltlons, but wlth r and c flxed. 


