Chapter Ten |
DISCRETE UNIVARIATE DISTRIBUTIONS

1. INTRODUCTION.

1.1. Goals of this chapter.

We will provide the reader with some generators for the most popular fam!-
lles of discrete distrlibutlions, such as the geometrlie, blnomlal and Polsson distri-
butlons. These distributions are the fundamental bulldlng blocks In discrete pro-
bability. It 1s Impossible to cover most distributions commonly used In practice.
Indeed, there Is a strong tendency to work more and more with so-called general-
ized distributions. These distributions are elther deflned constructively by com-
binlng more elementary distributions, or analytlcally by providlng a multl-
parameter expression for the probablllty vector. In the latter case, random varl-
ate generatlon can be problematic slnce we cannot fall back on known distribu-
tlons. Users are sometlimes reluctant to design thelr own algorithms by mimlcking
the deslgns for similar distributlons. We therefore include a short sectlon with
unlversal algorithms. These are In the splirlt of chapter VII: the algorithms are
very simple albelt not extremely fast, and very lmportantly, thelr expected time
performance Is known. Armed with the unlversal algorithms, the worked out
examples of this chapter and the table methods of chapter VIII, the users should
be able to handle most distributions to thelr satisfaction.

We assume throughout this chapter that the discrete random varlables are
all Integer-valued.
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1.2. Generating functions.

Let X be an Integer-valued random varlable with probablllty vector
p; = P(X=1) (i Integer) .

An lmportant tool In the study of discrete distributions is the moment generat-
ing function

m(s)= E(e*X)= Zpies" )

It 1s possible that m (s ) Is not finlte for some or all values s >0. That of course s
the maln difference with the characteristic function of X. If m (s) is finite In

some open Interval contalning the orlgin, then the coefficlent of s /n! In the
Taylor series expansion of m (s ) is the n-th moment of X .

A related tool 1s the factorial moment generating function, or simply
generating function,

k(s)=E(sX)= Zp,~s* :

which is usually only employed for nonnegative random variables. Note that the
serles In the definitlon of k(s) 1is convergent for |s | <1 and that

m(s) = k(e®). Note also that provided that the n-th factorlal moment (l.e.,
EXX-1) - (X-n+1))) of X Is finlte, we have

E®))y = E(X(X-1) - (X-n+41)).

In particular E(X)=k'(1) and Var (X)=k""(1)+k'(1)~k'%(1). The generating
functlon provides us often with the slmplest method for computing moments.

It Is clear that if X,, ... , X, are Independent random variables with
moment generating functlons m,, . .., m,, then 37X; has moment generating
function J]m; . The same property remalns valld for the generating function.

Example 1.1. The binomial distribution.

A Bernoulli (p) random variable 1s a {0,1}-valued random varlable tak-
ing the value 1 with probablllty p . Thus, it has generating function 1-p +ps. A
binomial (n,p) random variable Is defined as the sum of n 1id Bernoulll (p)
random variables. Thus, It has generating function (1-p +ps ™. .
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Example 1.2. The Poisson distribution.

Often 1t is easy to compute generating functions by explicltly computing the
convergent Inflnlte serles Zs‘ p;. This will be Mllustrated for the Polsson and

]
geometric distributlons. X 1s Poisson (\) when P(X=z')=->f—'-e"‘ (+ >0). By
; =

summing st P;,» We see that the generating functlon Is g A8 X Is geometric
(p) when P(X=i)=(1-p)'p (i >0). The corresponding generating functlon ls

p/(1-1-p)s ).

If one Is shown a generating funét;lon, then a careful analysis of 1ts form can
provide valuable clues as to how a random varlable with such generating function
can be obtalned. For example, If the generating function Is of the form

g(k(s))

where ¢,k are other generating functlons, then it suffices to take X 1+ + Xy
where the X,- 's are 1id random varlables with generating function k, and NV 1s an
Independent random variable with generating function ¢ . Thls follows from

g(k(s)) = § P(N=n)k"(s) (definition of ¢)

n =0
00 - 00 ,
= YW PN=n)P(X+ - +X,=t)s'
n =0 § =0
oo )
= Y |s' S P(N=n)P(X,+ " +X,=1)
{ =0 n =0
00 ,
— ES'P(X1++XN=Z)
i =0

Example 1.3.

If X,,... are Bernoulll (p) random varlables and N is Polsson ()\), then
X,+ ' -+ +X has generating functlon
e~)\+>s(1~p+ps) = ¢~MP +XAps ,

l.e. the random sum Is Poisson (Ap) distributed (we already knew thls - see
chapter VI). [}

A compound Poisson distribution Is a distribution with generating func-
tlon of the form e ™ (8) where k s another generating function. By taking
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k(s )==s, we see that the Polsson distribution ltself 1s a compound Polsson distri-
bution. Another example is given below.

I

Example 1.4. The negative binomial distribution.

We deflne the negative binomial distribution with parameters (n,p)
(n >1 1s Integer, p €(0,1)) as the distribution of the sum of n 1ld geometrlc ran-
dom varlables. Thus, It has generating function

n
( 4 ) = e MMk (s)
1-(1-p)s

where A = n log(-l-) and
4

ey o Jog(1-(1-p)s)
ko) = log(p )

> a=p)

- §
=1 ?

 _ 1
log(p ) ;

The function k(s) Is the generating function of the logarithmic series distri-
bution with parameter 1-p . Thus, we have Just shown that the negative bino-
mlal distribution 1s a compound Polsson distribution, and that a negatlve bino-
mlal random variable can be generated by summing a Polsson (A\) number of iid
logarithmic serles random varlables (Quenoutlle, 1949). JJi

Another common operation Is the mixture operation. Assume that given Y,
X has generating function ky(s) where Y Is a parameter, and that Y ltself has
some (not necessarlly discrete) distributlon. Then the unconditional generating
function of X 1s £ (ky(s)) . Let us lllustrate this once more on the negative bino-
mlal distribution.

Example 1.5. The negative binomial distribution.
Let Y be gamma (n ,-}i), and let ky be the Polsson (Y') generating func-
p

tion. Then
LY

n
e Y +ys dy

E(ky(s)) = [—L—"—
or(nx-l-?—}’—)"

_ p__

_—(1-(1—]))6)
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We have dlscovered yet another property of the negative blnomlal distributlon
with parameters (n,p ), l.e. It can be generated as a Polsson (Y) random varlable

where Y In turn Is a gamma (n ,tﬂ) random varlable, This property will be of

great use to us for large values of n, because unlformly fast gamma and Poisson
generators are In abundant supply. .

1.3. Factorials.

The evaluation of the probabllitles p; frequently Involves the computation of
one or more factorials. Because our maln worry 1s with the complexity of an algo-
rithm, 1t is lmportant to know Just how we evaluate factorials. Should we evalu-

n
ate them explicitly, l.e. should n! be computed as 11 ¢, or should we use a good
t =1

approxlmation for n! or log(n!)? In the former case, we are faced with tlme com-
plexity proportional to n, and with accumulated round-off errors. In the latter
case, the time complexity 1s O (1), but the price can be steep. Stirling’s serles for
example 1s a dlvergent asymptotic expanslon. This means that for fixed n, taking
more terms In the serles 1s bad, because the partlal sums In the serles actually
diverge. The only good news 1s that 1t 1s an asymptotic expansion: for a fixed
number of terms In the serles, the partlal sum thus obtalned 1s log(n!)+o (1) as
n —0o0. An algorithm based upon Stirling’s serles can only be used for n larger
than some threshold n 4 which in turn depends upon the desired error margin.

Since our model does not allow Inaccurate computations, we should elther
evaluate factorlals as products, or use squeeze steps based upon Stirling's serles to
avold the product most of the time, or avold the product altogether by using a
convergent sertes. We refer to sectlons X.3 and X.4 for worked out examples. At
Issue here 1s the tightness of the squeeze steps: the bounds should be so tight that
the contribution of the evaluatlon of products In factorlals to the total expected
complexity 1s O (1) or o (1). It Is therefore helpful to recall a few facts about
approximations of factorlals (Whlttaker and Watson, 1927, chapter 12). We will
state everything In terms of the gamma function since n!=I'(n +1).
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Lemma 1.1. (Stirling’s series, Whittaker and Watson, 1927.)
For z >0, the value of log(I'(z))-(z ——;—-)log(a: )+ —%-log(zw) always lles

between the n-th and n +1-st partlal sums of the serles

o0 (—l)i —IB,'

{—=1 21 (21 -1)z 2!

where B; 1s the ¢-th Bernoulll number defined by

[oo]

f t2n—1 d
B, == 4n t
n Oezm_l
1 1 1 1 5 891 7
In articular, B,=—,B,=— B,—=— B, =—,B;=— B ;~=—— B, =—,
P 17 g 2 30" % 42" 307 % 667 % 273077 6

‘We have as speclal cases the Inequalities

(z +-§-)log(z +1)—(z +1)+—;—log(27r) < log(l'(z +1))

1

1 1 S
S (@+7)loglz +1)~(e +1)+ Zlog(2m+-orr

Stirling's series with the Whittaker-Watson lower and upper bounds of
Lemma 1.1 Is often sufficlent in practice. As we have polnted out earller, we will
stlll have to evaluate the factorial explicitly no matter how many terms are con-
sldered in the serles, and In fact, things could even get worse If more terms are
considered. Lucklly, there Is a convergent series, attributed by Whittaker and
Watson to Binet.



X.1.INTRODUCTION 491

Lemma 1.2. (Binet’s series for the log-gamma function.)
For z >0,

log(T'(z )) = (x—-21—)10g(x -z +-;—log(27r)+R (),

where
1 CI 62 C3
=) 2 U(z+1) 2(z+1)(z+2) 3(z+1)(z+2)(x+3)

In which

1

¢, = f(U-I-l)(u +2) - (u+n-1)2u-1)u du .

0

In partlcular, c1=i, c(_,=3—, c3=—5§-, and ¢, = 22(;/ . All terms In R (z) are

3 60
poslitive; thus, the value of log(I'(z )) Is approached monotonlically from below as

we conslder more terms In R (z ). If we conslder the first n terms of R (z), then
the error Is at most
T +1 T +1
C + ( +
z T-+n+1

>

where C=-;5-8—\/47re 1/8, Another upper bound on the truncation error Is provided

by
1 a 1 T +1 1
C(1+a 7+l C—(——=) .
1+ +x+1)(1+a x+1) + T (1+a)

where a €(0,1] is arbltrary (when z 1s large compared to n, then the value
n+1

T

T
lo Is suggested).
g( ~ +1) gg )

Proof of Lemma 1.2.

Blnet’'s convergent serles Is glven for example In Whittaker and Watson
(1927, p. 253). We need only establish upper bounds for the tall sum In R (z)

1
beginning with the n +1-st term. The Integrand In ¢; Is positive for u >—2—.

Thus, the 7 -th term 1s at most
1
it [ (u-1)u du
1/2 . 5(¢ 1)
2i(z4+1) - (z+4)  48(1+z) - - (i +z)
__ BD(4)(z +1)
T 48T(4 +z +1)

. 1 1 .
< 5 \/ 2m(z +1 +1) 6T27+ 12(z +1) ( ¢ Y ( z+1 ) +1
— 48 t(z+1) z+1+1 T +1+1
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(by Lemma 1.1 )
¢

T+l
< C [ z I +1
- (a:+z'+1)( )

T4+t +1

5 .
where C=;—é-\/47re 1/6 (use the facts that z >0, >1). We obtaln a first bound
for the sum of all tall terms starting with ¢ =n +1 as follows:
T4+1

[ee] 2'

o0

C : : . T+l < C__ii‘_l__z.q_l

,-=§+1 ($+'l+1) (.’E+1+1) - ’.=§+1 ($+2 _+_1)
o0
+1

< o=yt gt
‘"{ (:z:+t+1)
=C$+1( T 41 "

z zT+n+l1

Another bound Is obtalned by choosing a constant a €(0,1), and splitting the tall
sum Into a sum from i=n-+1 to 1=m = |a (z +1).|, and a right-infinite sum
starting at ¢+ =m 1. The first sum does not exceed

m ) . 0 .
N C(———) < 3 Cl—2—) =cZ2H T __jn
f=n+1  THeFLT T 0 T4mAl T+l  T4+m+1

< Cltad—2—) gL yn+1
z4+1 14+a z+1

Adding the two sums glves us the following upper bound for the remalnder of the
serles starting with the n 41-st term:

1 a 1 xz+1 1
C(1+a + il 4 O T,
1+ +x+1)(1+a x+1) + T (1+a) .

The error term glven In Lemma 1.2 can be made to tend to O merely by
keeping n filxed and letting z tend to co. Thus, Binet's series is also an asymp-
totlc expansion, just as Stirling's serles. It can be used to bypass the gamma
function (or factorlals) altogether If one needs to decide whether log(I'(z ))<t for
some real number {. By taking n terms in Binet’s serles, we have an interval
{a, ,b,] to which we know log(I'(z )) must belong. Since b, —a, —0 as n —oo, we
know that when tz£log(I'(z)), from a glven n onwards, ¢ will fall outside the
Interval, and the appropriate decision can be made. The convergence of the serles
s thus essentlal to Insure that this method halts. In our applications, ¢ 1s usually
a unlform or exponentlal random varlable, so that equality t=log(l'(x)) occurs
with probability 0. The complexity analysls typlcally bolls down to computing
the expected number of terms needed In Blnet's series for fixed z. A quantity
useful In this respect Is

%03 n(b,-a,) .

n =0
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Based upon the error bounds of Lemma 1.2, 1t can be shown that thls sum 1Is o (1)
as z —oco, and that the sum Is unliformly bounded over all z >1 (see exerclse 1.2).
As we wlll see later, this lmplies that for many rejectlon algorithms, the expected
time spent on the decision Is unlformly bounded in z. Thus, It Is almost as If we
can compute the gamma function In constant tlme, Just as the exponential and
logarithmle functions. In fact, there ls nothing that keeps us from adding the
gamma function to our list of constant time functlons, but unless explicitly men-
tloned, we wlll not do so. Another collectlon of inequallties useful In deallng with
factorlals via Stirling’s serles Is given In Lemma 1.3:

Lemma 1.3. (Knopp, 1964, pp. 543,548)
For Integer n, we have

k (_.1)1'—13]. n—27-1)

1
log(n!) = (n +—=)log(n }-n +log(v2n)+ - - +R,
2 P2y CYD) ”
where B,B, - -+ are the Bernoulll numbers and
4(2k -1)!
lRlc,n l S

am(2mn )2

is a residual factor.

1.4. A universal rejection method.

Even when the probabllitles p; are explicltly glven, 1t Is often hard to come
up with an efficlent generator. Quantitles such as the mode, the mean and the
variance are known, but a useful dominating curve for use In a rejection algo-
rithm s generally not known. The purpose of this sectlon Is to go through the
mechanles of derlving one acceptable rejection algorithm, which will be useful for
a huge class of distributlons, the class of all unlmodal distributions on- the
Integers for which three quantlities are known:

1. m, the location of the mode. If the mode Is not unlque, l.e. several adjacent
Integers are all modes, m Is allowed to be any real number between the left-
most and rightmost modes.

1

M, an upper bound for the value of p; at a mode 7. If possible, M should
be set equal to thls value.

3. 2, an upper bound for the second moment about m . Note that If the varl-
ance o2 and mean x are known, then we can take s 2=¢>+(m —u)°.

The universal algorithm derlved below 1s based upon the following Inequalities:
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Theorem 1.1.
For all unlmodal distributions on the integers,

2
n, < 1n111(]\4f,—_—3‘s———5) (+ Integer) .

| £ —m
In additlon, for all Integer ¢ and all xE[i——é—,i +—;—],
352
p; < ¢g(z)= min(M, 1 3)-
(Jz-m | —E)+

Furthermore,
12
3

[g = M+33s%)3M? .

Proof of Theorem 1.1.
Note that for ¢ >m,

2= B G-mPp; 2 B (G-m)

j=—00 i>jizm
i (1-m)®
> p [(u-m ) du = p; =

m

This establlshes the first Inequality. The bounding argument for ¢ uses a stan-
dard tool for making the transition from discrete probabllities to denslties: we
consider a hlstogram-shaped density on the real llne with helght p; on

[+ ——12-,z' +-3—). This denslty s bounded by ¢ (z) on the Interval In question. Note

1
the adjustment by a translation term of -5 when compared with the first discrete

bound. This adjustment Is needed to Insure that g domlnates p; over the entire
Interval.

Finally, the area under ¢ Is easy to compute. Defilne p=(3s2)!/3M2/3, and
P

1 1. p
observe that the M term In ¢ Is the minlmum term on [Mm ———-t—,m 4 —4—].
g e vy v]

The area under this part is thus M +2p. Integrating the two talls of ¢ glves the
value p. i

To understand our algorithm, 1t helps to go back to the proof of Theorem
1.1. We have turned the problem Into a continuous one by replacing the probabll-

: .1 .
Ity vector p; with a histogram-shaped denslty of helght p; on [z ———2—,2 +%). Since
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this histogram 1s domlnated by the functlon g gilven in the algorithm, 1t Is clear
how to proceed. Note that If Y Is a random varlable with the sald histogram-
shaped denslity, then round(Y ) Is discrete with probability vector p; .

Universal rejection algorithm for unimodal distributions

[SET-UP]
L 2
Compute p+—(3s%)3M 3,
[GENERATOR)]
REPEAT
Generate U, W uniformly on [0,1] and V uniformly on [—1,1].

¥ U<—£
3p+M

THEN

—_n (= P
Y —m +( > +W)Sign(v)

X «round(Y)

3
T—WM|V|Z
ELSE
1
Yem +(-2—+%)V
X «~round(Y)
T+~WM
UNTIL T <px
RETURN X

In the universal algorithm, no care was taken to reuse unused portlons of
unlform random varlates. This Is done malnly to show where Independent unl-
form random varlates are preclsely needed. The expected number of iterations In
the algorithm s precisely M +3p. Thus, the algorithm 1s unlformly fast over a
class @ of unlmodal distributions with uniformly bounded (1+s )M If p; can be
evaluated In time Independent of ¢ and the distributlon.

Example 1.86.

For the blnomlal distributlon with parameters n,p, 1t Is known (see sectlon
X.4) that the mean x 1s np, and that the varlance 0% Is np (1-p ). Also, for fixed
n, .\'1~1/(\/§;a), and for all n,p, M _<_2'/(\/Er-a). A mode Is at m = [(n +1)p].
Stnce | y-m | <min(1,np ) (exerclse 1.4), we can take s?=o®4+min(1,np). We
~an verlfy that

a 8 min(1,np )

;S =1+

m np (1-p ) )
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and this Is uniformly bounded over n >1,0<p S—g—. This Implies that we can

generate binomlal random varlates uniformly fast provided that the binom!lal pro-
babllitles can be evaluated In constant time. In sectlon X.4, we will see that even
this Is not necessary, as long as the factorlals are taken care of appropriately. We
should note that when p remalns fixed and n —oco, p~(3/(27))/%. The expected
number of lterations ~3p, which 1s about 2.4. Even though this 1s far from
optimal, we should recall that besldes the unlmodality, virtually no propertles of
the binomial distributlon were used in derlving the bounds. [}

There are lmportant sub-famllles of distributions for which the algorithm
given here 1s uniformly fast. Constder for example all distributions that are sums
of 11d integer-valued random varlables with maximal probabllity p and finite

varlance o%. Then the sum of n such random varlables has varlance n o2 Also,

1
M < —==—==— (Rogozin (1961); see Petrov (1975, p. 56)). Thus, If the n-sum Is
~ Vn(l-p)

unlimodal, Theorem 1.1 Is applicable. The rejectlon constant 1s
2
3p+M 53(:;39—)1/%1
=p

unlformly over all n. Thus, we can handle unimodal sums of 1}jd random varl-
ables In expected time bounded by a constant not dependlng upon n. This
assumes that the probabllities can all be evaluated In constant time, an assump-
tion which except In the slmmplest cases Is difficult to support. Examples of such
famllles are the binomlal famlly for fixed p, and the Polsson famlily.

Let us close this sectlon by noting that the rejection constant can be reduced
in special cases, such as for monotone distributions, or symmetric unimodal dis-
tributions.

1.5. Exercises.

1. The discrete distributions considered In the text are all lattice distributions.
In these distributions, the Intervals between the atoms of the dlstribution are
all Integral multiples of one quantity, typlcally 1. Non-lattlce distributions
can be conslderably more difficult to handle. For example, there are discrete
distributions whose atoms form a dense set on the positive real line. One
such distribution s deflned by

(e -1)
(e i+j_1)2

’

P(X=2) =
J

where ¢+ and j are relatively prime posltive integers (Johnson and Kotz,
1969, p. 31). The atoms In this case are the ratlonals. Discuss how you could



X.1.INTRODUCTION 497

efficlently generate a random varlate with this distribution.

2. Usling Lemma 1.2, show that If €, Is a bound on the error commlitted when
using Blnet's serles for log(T'(z )) with n >0 terms, then

[o0]

sup Y n¢, < o0
221 n =0

and

0
lm M ne, =0.
Z 00 5o

3. Assume that all p;’s are at most equal to M, and that the varlance is at
most equal to o2 Derlve useful bounds for a unlversal relectlon algorlthm
which are slmllar to those glven In Theorem 1.1. Show that there exists no
domlnating curve for thls class which has area smaller than a constant times
d"\/]\—f , and show that your dominating curve Is therefore close to optimal.
Glve the detalls of the rejection algorithm. When applled to the blnomial

distributlon with parameters n,p varylng In such a way that np —oo, show
1

that the expected number of lterations grows as a constant times (np )* and
conclude that for thls class the unlversal algorithm Is not uniformly fast.

4. Prove that for the blnomlal distribution with parameters n,p, the mean u
and the mode m = |(n +1)p] differ by at most min(1,np ).

5. Replace the Inequalities of Theorem 1.1 by new ones when Instead of s2, we
are glven the r-th absolute moment about the mean (r >1), and value of
the mean. The unimodality 1s still understood, and values for m ,M are as in
the Theorem.

6. How can the rejectlon constant ( f ¢ ) In Theorem 1.1 be reduced for mono-
tone distributlons and symmetric unimodal distributions ?

7. The discrete Student’s t distribution. Ord (1968) Introduced a discrete
distribution with parameters m >0 (m Is Integer) and a €[0,1],5 £0:

m 1
- = K 00 <1 <0) .
(il s

Here I 1s a normalization constant. This distribution on the Integers has
the remarkable property that all the odd moments are zero, yet it Is only

symmetric for a =0,a -".—-% and a¢ =1. Develop a unlformly fast generator
for the case m =0.

8. Arfwedson’s distribution. Arfwedson (1951) introduced the distribution
deflned by

— éo(-l)f ] (L G20,
b=
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where k,n are posltive Integers. See also Johnson and Kotz (1969, p. 251).
Compute the mean and variance, and derive an Inequality conslsting of a flat
center plece and two decreasing polynomlal or exponential talls having the
property that the sum of the upper bound expressions over all ¢ Is uniformly
bounded over &k ,n .

9. Knopp (1964, p. 553) has shown that

X 1

?

W2 e (anlmat?)

where c==-l-( 1 1
2t et_l t

generator for the famlly of discrete probabllity vectors defined by this sum.

+%) and ¢ >0 s a parameter. Glve a uniformly fast

2. THE GEOMETRIC DISTRIBUTION.

2.1. Definition and genesis.
X 1s geometrically distributed with parameter p €(0,1) when
PX=i)=p1-p)? (@(i>1).

The geometrle distribution Is important In statistlcs and probability because 1t Is
the distribution of the walting tlme until success In a sequence of Bernoulll trials.
In other words, If U,,U,,... are 11d uniform [0,1] random varliables, and X 1s the
Index of the first U; for which U; <p, then X Is geometric with parameter p.
This property can of course be used to generate X, but to do so has some serious
drawbacks because the algorithm Is not uniformly fast over all values of p: just
conslder that the number of uniform random varlates needed 1is Itself geometric
(p ), and the expected number of uniform random variates required is

E(X)=-11;.

For p 2-:1;-, the method 1s probably difficult to beat in any programming environ-

ment.
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2.2. Generators.

The experlmenta@ method described In the prevlous sectlon Is summarized
below: 4

Experimental method for geometric random variates

X+0

REPEAT
Generate a uniform {0,1] random variate U .
X+—X+1

UNTIL U <p

RETURN X

1 1
This method requlires on the average — unlform random varlates and — com-

P
parisons and additlons. The number of unlform random varlates can be reduced
to 1 If we use the Inverslon method (sequential version):

Inversion by sequential search for geometric random variates

Generate a uniform [0,1] random variate U.
X1
Sum+—p
Prod«p
WHILE U >Sum DO
Prod«—Prod(1-p )
Sum+Sum-+Prod
X~X+1
RETURN X

' 2
Unfortunately, the expected number of additlons s now -;—2, the expected

1
number of comparlsons remalns l, and the expected number of products s ;—-1.
Inverston In constant tlme Is possible by truncation of an exponential random

varlate. What we use here Is the property that
F(i)=P(X<i)=1-p01-p) 't =1-(1-p) .

J>0



500 X.2.THE GEOMETRIC DISTRIBUTION

Thus, If U 1s uniform [0,1] and E Is exponential, 1t Is clear that
[ log(U) 7
log(1-p )
and
- 5 1
log(1-p)

are both geometric (p ).

If many geometric random varlates are needed for one flxed value of p, extra
speed can be found by eliminating the need for an exponentlal random variate
and for truncation. This can be done by splitting the distribution Into two parts,
a tall carrying small probabillty, and a maln body. For the maln body, a fast
table method is used. For the tall, we can use the memoryless property of the
geometric distribution: given that X >17, X —1 is agaln geometric (p ) distributed.
This property follows directly from the genesis of the distributlon.

2.3. Exercises.

1. The quantity log(l-p ) is needed In the bounded tlme inversion method. For
small values of p, there Is an accuracy problem because 1-p s computed
before the logarithm. One can create one’s own new function by basing an
approximation on the serles

1 0,1 3
— +__. +__. + A .
(p S P T3P )
Show that the following more quickly convergent series can also be used:

2 1 5,1 4
—_—(1 — " —— y
(1T )

2
where r =1-~=—,

2. Compute the varlance of a geometric (p ) random variable.
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3. THE POISSON DISTRIBUTION.

3.1. Basic properties.
X 1s sald to be Poisson (\) distributed when

i

P(X=i)= —?—'e“)‘ (i >0) .

A>0 1s the parameter of the distribution. We do not have to convince the readers
that the Polsson distribution plays a key role In probabllity and statistics. It Is
thus rather important that a simple uniformly fast Polsson generator be avallable
In any nontrivial statlstical software package. Before we tackle the development
of such generators, we will briefly revlew some properties of the Polsson distribu-
tlon. The Polsson probabilities are unimodal with one mode or two adjacent
modes. There 1s always a mode at |_>\J The tall probabllities drop off faster
than the tall of the exponential denslty, but not as fast as the tall of the normal
density. In the design of algorithms, It 1s also useful to know that as A—oo, the
random varlable (X -\)/v/X tends to a normal random varlable.

Lemma 3.1.
When X Is Poisson (M), then X has characteristic function
(IS(t) — E(eitX) —_ e)\(e"—l) )
It has moment generating function E (e tX)=exp(>\(e t_1)), and factorlal moment
generating function E (tX)=e Mt-1) Thuys,
EX)=Var(X)=\.

Also, If X,Y are Independent Polsson (A) and Polsson (u) random varlables,
then X +Y 1s Polisson (A+u).

Proof of Lemma 3.1.
Note that

E (e :'tX) — § e =N (Ne i )j

~A+Xet
= .
j=0 J:

= €

The statements about the moment generating functlon and factorlal moment gen-
erating function follow directly from this. Also, If the factorlal moment generat-
Ing functlon Is called k, then k' (1)=F (X )=\ and k”’(1)=E (X (X-1))=\2
From this we deduce that Var (X )=M. The statement about the sum of two
Independent Polsson random vartables follows directly from the form of the
characteristic function. Jjj
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3.2. Overview of generators.
The generators proposed over the years can be classified Into several groups:

1. Generators based upon the connectlon with homogeneous Polsson processes
(Knuth, 1969). These generators are very slmple, but run In expected time
proportional to A.

2. Inversion methods. Inverslon by sequential search started at O runs In
expected time proportlonal to X (see below). If the sequential search Is
started at the mode, then the expected time Is O(\/—)\‘) (Fishman, 1978).
Inversion can always be sped up by storing tables of constants (Atkinson,
1979).

3. Generators based upon recurslve properties of the distribution (Ahrens and
Dieter, 1974). One such generator Is known to take expected tlme propor-
tional to log(M).

4. Relectlon methods. Rejectlon methods seem to lead to the slmplest uni-
formly fast algorithms (Atkinson, 1979; Ahrens and Dileter, 1980; Devroye,
1981; Schmelser and Kachitvichyanukul, 1981).

5. The acceptance-complement method with the normal distribution as starting
distribution. See Ahrens and Dileter (1982). This approach leads to efficlent
uniformly fast algorithms, but the computer programs are rather long.

We are undoubtedly omitting a large fraction of the ilterature on Polsson random
varlate generation. The early papers on the subject often proposed some approxi-
mate method for generating Polsson random varlates which was typlcally based
upon the closeness of the Poisson distribution to the normal distribution for large
values of . It Is polntless to glve an exhaustive historlecal survey. The algorithms
that really matter are those that are elther simple or fast or both. The definition
of "fast” may or may not lnclude the set-up time. Also, since our comparisons
cannot be based upon actual Implementatlons, it Is Important to distlngulsh
between computational models. In particular, the avallabllity of the factorial in
constant time is a cruclal factor.

3.3. Simple generators.

The connectlon between the Polsson distribution and exponentlal Inter-
arrlval times In a homogeneous point process 1s the following.
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Lemma 3.2.

If E,E,,... are I1d exponentlal random varlables, and X s the smallest
integer such that

X+41
EEi >N,

§=1

then X 1s Polsson (\).

Proof of Lemma 3.2.
Let f, be the gamma (k) denslty. Then,

k w
PX<k)=P(E >N = [ f4m() dy .
f=1 DY

Thus, by partlial Integration,
P(X=k)=PX<k)P(X<k-1)

= { (rr@)-F i () dy

!

k-1
!

: eV dy

{y-k)
bN

2 koY
o yre)

-\

co
fd
)N
>\k
= &

The algorithm based upon thls property ls:
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Poisson generator based upon exponential inter-arrival times

X0
Sum+0
‘WHILE True DO
Generate an exponential random variate E .
Sum«Sum+FE
IF Sum<\
THEN X «—X +1
ELSE RETURN X

Using the fact that a unlform random varlable is distributed as e E , 1t is
easy to see that Lemma 3.2 Is equlvalent to Lemma 3.3, and that the algorithm
shown above Is equlvalent to the algorithm following Lemma 3.3:

Lemma 3.3.
Let U,,U,,... be 11d uniform [0,1] random varlables, and let X be the smal-

lest Integer such that

X+1 N
H U,'<6_ .

f=1

Then X 1s Poisson (M\).

Poisson generator based upon the multiplication of uniform random variates

X0
Prod«1
WHILE True DO
Generate a uniform {0,1] random variate U.
Prod+—Prod U
IF Prod>¢ ™ (the constant should be computed only once)
THEN X +X +1
ELSE RETURN X
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3.4. Rejection methods.

To see how easy It Is to Improve over the algorithms of the previous sectlon,
1t helps to get an ldea of how the probabllities vary with X\. First of all, the peak
at |\ ] varles as 1/\/§:

Lemma 3.4.
The value of P (X = [\ ]) does not exceed
—
ver ]
and ~ 1/v27\ as A—oo.

Proof of Lemma 3.4.
We apply the Inequallty £!>1 e~ v2mi , valld for all Integer 7 >1. Thus,

xJ 2]
..)\>\ < -O-D A 1
T = ¢ T 7T
< 1
- Ver Z]

Furthermore, by Stirling’s approximation, it 1s easy to establish the asymptotic
result as well. [Jj

We also have the following Inequallty by monotonicity:

Lemma 3.5.

_ : 2(V\+1) :
PX=D]xi)< ST (i >0).

Proof of Lemma 3.5.

We will argue for the positlve side only. Writing p; for P (X =1 ), we have
by unimodallty,

V31 > E(| X-X])+1

>E(Xx-IN = 5 15-Dd s
i\

Z Pivn] 27
J=0
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The expected number of lterations 1s the same for both algorlthms. However, an
addltlon and an expon_entlal random varlate are replaced by a multiplicatlon and
a uniform random varlate. This replacement usually works In favor of the multl-

plicative method. The expected complexity of both algorithms grows linearly with
A.

Another simple algorithm requiring only one uniform random varlate is the
Inverslon algorithm with sequentlal search. In view of the recurrence relation
PX=i4+1) )
P (X =1) 141

(¢ 20),

this glves

Poisson generator based upon the inversion by sequential search

X0

Sume-e ™ Prode—e™

Generate a uniform [0,1] random variate U.
WHILE U >Sum DO

Xe—X+1
Prod<——-;‘?Prod

Sum+-Sum-+Prod
RETURN X

This algorithm too requires expected tlme proportional to A as A—oo. For large
X\, round-off errors proliferate, which provides us with another reason for avolding
large values of A\. Speed-ups of the inversion algorlthm are possible If sequentlal
search 1s started near the mode. For example, we could compare U first with
b=P(X < |_)\_|), and then search sequentlally upwards or downwards. If b s
avallable In time O (1), then the algorithm takes expected time O (V/)\) because
E(|X- By | )=0 (V\). See Fishman (1978). If b has to be computed first, thls
method 1s hardly competitive. Atkinson (1979) descrlbes varlous ways in which
the Inversion can be helped by the judiclous use of tables. For small values of X\ ,
there 1s no problem. He then custom bullds fast table-based generators for all A's
that are powers of 2, starting with 2 and ending with 128. For a given value of A,
a sum of Independent Polsson random varlates Is needed with parameters that
are elther powers of 2 or very small. The speed-up comes at a tremendous cost in
terms of space and programming effort.
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(1 +1
== -zﬁ;u;——)-purm y |

If we take the minimum of the constant upper bound of Lemma 3.4 and the
quadratlcally decreasing upper bound of Lemma 3.5, 1t 1s not difficult to see that
the cross-over polnt Is near A+c¢ v\ where ¢ ==(81r)1/4. The area under the bound-
Ing sequence of numbers 1s O (1) as A—o0. It Is uniformly bounded over all values
A>1. We do not imply that one should deslgn a generator based upon thls dom-
Inating curve., The polnt Is that 1t Is very easy to construct good bounding
sequences. In fact, we already knew from Theorem 1.1 that the universal rejec-
tlon algorithm of section 1.4 I1s uniformly fast. The domlinating curves of Theorem
1.1 and Lemmas 3.4 and 3.5 are simllar, both having a flat center part. Atklnson
(1979) proposes a logistic majorizing curve, and Ahrens and Dieter (1980) propose
a double exponentlal majorizing curve. Schmelser and Kachltvichyanukul (19881)
have a relectlon method with a triangular hat and two exponential talls. We do
not describe these methods here. Rather, we will describe an algorithm of Dev-
roye (1981) which 1s based upon a normal-exponentlal domlnating curve. This has
the advantage that the rejectlon constant tends to 1 as A—oo. In addition, we
will Hllustrate how the factorlal can be avolded most of the tlme by the Judicious
use of squeeze steps. Even If factorlals are computed In llnear tlme, the overall
expected time per random varlate remalns unlformly bounded over A. For large
values of A\, we wlill return a truncated normal random varlate with large proba-
bility.

Some inequallties are needed for the development of tight l’nequalltles for the
Polsson probabllities. These are collected In the next Lemma:
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.

Lemma 3.6.

Assume that « 20 and all the arguments of the logarlthms are positlve In
the 11st of Inequallties shown below. We have:

(1) log(i+u) < u
(1) log(i+u) < u—%ug-i——;—us

() log(14+u) > u—%—u2

2u
(Iv) log(1+u) > 2+
(v) log(i-z) < -3 %ui (k>1)
=1
) k-1 1 u"‘
(v1) log(i-u) = —"gl—z.-u —m (k>2)

Most of these Inequalitles are well-known. The other ones can be obtalned
wlithout difficulty from Taylor's theorem (Whittaker and Watson, 1927, s a good
source of informatlon). We assume that A>1. Slnce we wlll use rejection algo-
rithms, 1t can’t harm to normallze the Polsson probabllities. Instead of the proba-
bllitles p;, we wlll use the normallzed log probabilities

g; = log(p 4 j )+log(u!)-plog(X)+X

where pu= D\J Thlis can convenlently be rewrltten as follows:

Ny )
g9; = log(—“-)ﬂ 1og(u)—log((—“:—,“—)

“oe(T] (1+-;—)) (j >0)
f==1
=7 log(z‘-) + 40 (7 =0)
# Z= S T
—log( TT (1—-;)) (4 <0)

=0
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Lemma 3.7.
Let us use the notation 7, for max(s,0). Then, for all integer 57 >y,
;< I+ g0+
Moo2u+7

Proof of Lemma 3.7.
Use (1v) and (v) of Lemma 3.8, together with the ldentity

i = J‘(J'2+1) u

i=1

The lnequality of Lemma 3.7 can be used as the starting polnt for the
development of tight dominating curves. The last term on the right hand side In
the upper bound is not In a famlillar form. On the one hand, It suggests a normal
bounding curve when 7 Is small compared to u. On the other hand, for large
values of | 7 |, an exponentlal bounding curve seems more appropriate. Recall
that the Polsson probabllities cannot be tucked under a normal curve because
they drop off as e ~°/1°8(J) for some ¢ as j—oco. In Lemma 3.8 we tuck the Pols-
son probabllities under a normal maln body and an exponential right tall,

Lemma 3.8.
Assume that u>6 and that § Is an Integer satisfying

8 <6< .
Then
. . -2
PPV L ) RS RPN
q; < Yy (7 <0)
qOSO
415-——1—-—-5—1—
p(2u+1) 78
: 2
< iz 1 0< <6
9 = 2u+5+2u+6 (0=7 50
6 ] .
g; < L+1) (729).

N 2u+6 2
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Proof of Lemma 3.8.

The first three Inequalitles follow without work from Lemma 3.7. For the
fourth Inequallty, we observe that for 2< 5 <§,

j+-;— J(J +1)

0 < —= =L (omee j <6<p)
N+‘2" 2(ﬂ+'§-)

. 2]._].2

T o2udy

< 25-3% :

< —27:_-5—- (since 2< 5 <§) .

The fourth Inequallty Is also valld for j=0. For 7 =1, a qulck check shows that
1/p(26+1)<1/(2p+06) because 6<pu. This leaves us with the fifth and last Ine-

quallty. We note that 6>62> :uz . Thus,
. P
= +1
PRETEY; (7+1)
6 1 b
= - +
2u+6 A no 2u+é

6 7
< _ =) .
< 2u+5(1+2) [ |

g; <

)

Based on these Inequalitles, we can now glve a first Poisson algorithm:
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Rejection method for Poisson random variates

[SET-UP)

pe— LN}

Choose § integer such that 6 <6< u.
¢, —Vru/2

1
¢ gt—c 1 +Vr(u+6/2)/2¢ 2+

Ca—Cotl
1
c—cate™
5 s
2 a4+
c«—c,+-5-(2u+5)c 2+ 2

[NOTE)

The function g% is defined as ¢;—J 10g(£—)=j log(u)-log((p+ 7 )t/ pt).

[GENERATOR]
REPEAT

Generate a uniform [0,¢ ] random variate U and an exponential random variate E.
Accept +« False,

CASE
U<ec¢,:
Generate a normal random variate N .
Ye—|N | Vg
X—lY]

2
W2 B _Xiog)
2 I
IF X >-4 THEN W oo
e, <U<ey

Generate a normal random variate N .

Y —1+ l N I lH';
X[
~Y242Y pN
*—‘W—E —Xlog(—;)
IF X <6 THEN W00
e, <U<ecy
X+~o0
W «-FE
ea<U<ey
X1

W —~E -log( —>‘—)
U

c,<U:

Generate an exponential random variate V.
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Y —6+ V-?—(‘.Z;H—&)

X—[7
é
2p-+b
Accept —(W <g¥%]
UNTIL Accept
RETURN X +u

———

(1+—}-,-)—E -Xlog(i)
2 M

Observe the careful use of the floor and celllng functlons In the algorithm to
insure that the continuous dominating curves exceed the Polsson stalrcase func-
tlon at every point of the real line, not jJust the Integers ! The monotonicity of
the dominating curves is explolted of course. The function

g4 = 2 log(k)—log(&t;—f—)i)

is evaluated In every lteration at some point z . If the logarithm of the factortal s
avallable at unlt cost, then the algorithm can run In unlforfnly bounded time pro-
vided that 6 Is carefully plcked. Thus, the first Issue to be dealt with is that of
the relationship between the expected number of lterations and é.

Lemma 3.9.
If 6 depends upon X in such a way that

5= o(u) .—jf-wo,

then the expected number of iterations E (N ) tends to one as A—o0. In particu-
lar, the expected number of lterations remains uniformly bounded over X\ >8.

Furthermore,

it E(N) = 1+(1+0 (1)) 108(1) s A—ro0

where the Inimum Is reached if we choose

2
6 ~ 2u log(l—fﬂ) :
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Proof of Lemma 3.9.

In a preliminary computation, we have to evaluate

> el
J2-u
since this 1s the total welght of the normallzed Polsson probabililtles. It Is easy to
see that thls glves

o0
> p; e MpuINH
j=o0

u
~ e x(-ﬁ) vamu

~ V2ru

where we used the fact that log(\/u) = log(1+M-u)/1) = (\-p)/u+0 (u2).

Thus, the expected number of iterations Is the total area under the domlnating
1

curve ( with the atoms at O and 1 having areas one and e 'S respectively )

divided by (1+o0 (1))V2mu. The area under the domlnating curve ls, taking the

five contributors from left to right,

1 1 56
w, ./ Fva L (Z41)
Vruja+1+e 8 + 7r(,u+-2—)/26 2u+6+_?_(?_%i5_)e ate 2

If 6 1s not o (u), this can not ~ V2mru. If § < ¢ Vi for some constant ¢, then
the last term s at least ~ ie‘cz/“\/ﬁ, while 1t should really be o (V). Thus, the
¢

condlittons Imposed on § are necessary for E (/N )—1. That they are also suffictent
can be seen as follows. The fifth term In the area under the domlnating curves is
0 (\/ﬁ), and so are the constant second and third terms. The fourth term
~ Vmu/2, which establishes the result.

To minimize E (N )-1 In an asymptotically optimal fashlon, we have to con-
sider some sort of expanslon of the area In terms of decreasing asymptotic impor-

tance. Using the Taylor serles expansion for vi4+u4 for u near 0, we can wrlte
the first four terms as

L 2
Vru/2]14+0 (u 2)+1+£;+0((£—)) .

The maln term In excess of V2mu 1s

\/7m/2i .
41

We can also verlfy easlly that the contribution from the exponentlal tall Is
. e
-5"-‘-(1+o (1))e 22u+8)
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To obtain a first (but as we will see, good) guess for §, we will minimize
52

\/ﬂu/2-:1£-+iéie_2(2“+") .
It

This 1s equivalent to solving

4 &

M 4 /T

PR A Y (L —
(+52) 32u

If we ignore the o (1) term %, we can solve this explicltly and obtaln

5_-—-; \/2u log( 128'u) .
s

A plugback of this value In the original expression for the area under the dom-
Inating curve shows that it Increases as

Vo440 (1))1\/—;-¢——log(u) .

The constant terms are absorbed In o (1); the exponential tall contrlbution Is
O (1/Vlog(u)). If we replace § by §(1+€) where ¢ 1s allowed to vary with y but Is
bounded from below by ¢ >0, then the area ls asymptotically larger because the
Viog(u) term should be multiplied by at least 1+4c¢. If we replace § by §(1—¢),
then the contribution from the exponentlal tall Is at least Q(u°/2/vlog()). This
concludes the proof of the Lemma. .

We have to Insure that § falls within the limits imposed on it when the dom-
Inating curves were derlved. Thus, the following cholce should prove fallsafe In
practice:

6= max(ﬁ,mln(u,\/mt log(-—1—27r§-‘—))) .

We have now in detall dealt with the optimal design for our Polsson genera-
tor. If the log-factorial Is available at unit cost, the rejectlon algorithm is uni-
formly fast, and asymptotically, the rejectlon constant tends to one. § was plcked
to Insure that the convergence to one takes place at the best possible rate. For
the optimal 6, the algorithm basically returns a truncated normal random variate
most of the time. The exponential tall becomes asymptotically negligible.

We may ask what would happen to our algorithm 1f we were to compute all
products of successive integers explicitly ? Disregarding the horrible accuracy
problems Inherent In all repeated multiplications, we would also face a break-
down In our complexity. The computation of

- X !
gy = Xlog(%;—)-{u\ 10g(u)—1og((_._:_’.‘l.!)
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can be done in time proportional to 1+ IX | . Now, X 1s with high probability
normal with mean O and varlance approximately equal to \/[._t Since ¢ s com-
puted only once with probabllity tending to one, 1t Is clear that the expected time
complexity now grows as \/ﬁ If we had perfect squeeze curves, l.e. squeeze curves
In which the top and bottom bounds are equal, then we would get our unlform
speed back. The same Is true for very tight but Imperfect squeeze curves. A class
of such squeeze curves Is presented below. Note that we are no longer concerned
with the dominating curves. The squeeze curves glven below are also not derived
from the Inequallities for Stirling’s serles or Blnet's sertes for the log gamma func-
tlon (see sectlon 1). We could have used those, but 1t Is Instructive to show yet
another method of derlving good bounds. See however exerclse 3.9 for the appll-
catlon of Stirling's serles In squeeze curves for Polsson probabilitles.

Lemma 3.10.
Define
: A 7 (7 +1)
b, = q;—7log(—)4+—x .
J J W 2

Then for integer 7 >0,

‘- . . -2 . 2
> max |0, JU+V(ERJ+1) 77 +1)
12u2 12u3
t: . .
T« 1 +1)(25 +1)

12p2

Furthermore, for Integer —u< 7 <0, the converse Is almost true:
s JE+1)25+1) g5 +1)

- 1242 120%(u+j5 +1)

< min|o0,2 (7 +1)27+1)
1242

L

Proof of Lemma 3.10.
The proof 1s based upon Lemma 3.8, the identlities

Zk]i _ /c(/c2+1) , X"HQ___ /c(/c+1()3(2/c+1) , .Zi?f:

f =1 f==1

k3k +1)°
4 ’

and the fact that q; can be rewrlitten as follows:

(1] (1+%)) (j >0)

f=1

q,-—jlog(%)= 0 (5=0) . |
log(_ﬁl(l—-ﬁ-)) (7 <0)

§ =0
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The algorithm requires of course llttle modification. Only the line

Accept —[W <g%:]

needs replacing, The replacement looks like this:

T X(X +1)
o 2u

Accept +—[W <-T|N[X >0]

IF NOT Accept THEN

2 X +1
QT on -1)
T2
3(p+(X +1).)
Accept (W < Q]

IF NOT Accept AND [W <P} THEN Accept (W <g%)

P—Q-

It Is Interestlng to go through the expected complexity proof in this one
example because we are no longer counting lterations but multiplications.

Lemma 3.11.

The expected time taken by the modified Polsson generator ls uniformly
bounded over A>6 when 6 Is chosen as In Lemma 3.10, even when factorlals are
explicitly evaluated as products.

Proof of Lernma 3.11.
It suffices to establish the uniform boundedness of

E(|X |Iig<w<pr)

where we use the notation of the algorithm. Note that thls statement implicltly
uses Wald's equation, and the fact that the expected number of terations Is un!-
formly bounded. The expression Involving | X | s arrlved at by looking at the
tlme needed to evaluate ¢#% . The expected value will be split into five parts
according to the flve components In the distribution of X . The atomlc parts
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X =0,X =1 are easy to take care of. The contrlbution from the normal portions
can be bounded from above by a constant times

XX +1)?

E(|X |(P- < E(|X
(X [(P-@) S E(1X | -2

Here we have used the fact that W conslsts of a sum of some random varlable
and an exponentlal random variable. When X >0, the last upper bound Is In turn
not greater than a constant times E (| X | %)/u® = O (u™'/?). The case X <0 Is

taken care of simllarly, provided that we first split off the case X<—E- The
split-off part 1s bounded from above by

0 ()P (X <-Ly < o S)E(X)

= 0(@1).
For the exponential tall part, we need a uniform bound for
1

E(| X | Su)1og(n)) *

where we have used a fact shown In the proof of Lemma 3.10, l.e. the probabliity
that X s exponentlal decreases as a constant tlmes log™/3(u). Verify next that
given that X Is from our exponential tall, E (| X | ®)==0 (6*). Comblning all of
this shows that our expression in question Is

O(lo%;‘l(jt))'

This concludes the proof of Lemma 3.11. [Jj

The computations of the previous Lemma reveal other Interesting facets of
the algorithm. For example, the expected tlme contribution of the evaluations of

2
factorlals 1s O (l-o—%/.(_—“)). In other words, 1t 1s asymptotically negligible. Even so,

the maln contrlbutlgn to this o (1) expected time comes from the exponentlal tall.
This suggests that It 1s possible to obtaln a new value for § which would minimize
the expected time spent on the evaluation of factorials, and that thls value will
differ from that obtalned by minimizing the expected number of lterations.
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3.5. Exercises,

1. Atkinson (1979) has developed a Polsson (\) generator based upon re)ectlon
from the loglstic density

-2
z-a

[ (@)= e ! {1+e ”) ,

where ¢ =X\ and b =v3\/m. A random varlate with this density can be gen-
I-UU) where U 1s uniform [0,1].

erated as X «a +b log(

A. Find the distribution of kX—F—;-

Prove that X has the same mean and variance as the Polsson dlstribu-
“tlon.

C. Determine a relectlon constant ¢ for use with the distributlon of part
A. '

D. Prove that ¢ s unlformly bounded over all values of \.

2. A recursive generator. Let n be an Integer somewhat smaller than X,
and let G be a gamma {n ) random variable. Show that the random varlable
X defined below 1s Polsson (A\): if G >X\, X is binomial (n-1,7\/G); If
G <)\, then X Is n plus a Polsson (A~G ) random varlable. Then, taking
7 = LO.875)\J, use thls recursive property to develop a recursive Polsson
generator. Note that one can leave the recursive loop either when at one
polnt G >\ or when X\ falls below a fixed threshold (such as 10 or 15). By
taking n a fixed fraction of A, the value of X\ falls at a geometric rate. Show
that In view of thls, the expected time complexity Is O (1+log(\)) iIf a con-
stant expected time gamma generator Is used (Ahrens and Dleter, 1974).

Prove all the Inequallties of Lemma 3.6.
Prove that for any A and any ¢ >0, llm pj/e“‘fz = 00. Thus, the Poisson
J—00

curve cannot be tucked under any normal curve.

5. Poisson variates in batches. Let X,,...,X, be a multinomial
(Y,p,, ..., p,) random vector (l.e., the probabllity of attalning the value
1, .. -, 1, 180 when Y}z; Isnot ¥ andls :

Y!

!

L. iy
il! . pl pn
otherwise. Show that If Y Is Polsson (\), then X, . . . , X, are Independent
Polsson random varlables with parameters Ap,, ..., Ap, respectlvely.

(Moran, 1951; Patil and Seshadrl, 1964; Bolshev, 1965; Tadlkamalla, 1979).
8. Prove that as A—oo, the distribution of (X -\)/v\ tends to the normal dis-

tributlion by provmﬁg that the characteristic function tends to the charac-
teristic function e~t7/2 of the normal distribution.
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WHILE True DO

Generate a Poisson (1) random variate X, and a uniform [0,1] random
variate U.

IF X <n THEN
ke1,7«0,5—1
WHILE j <n-X AND U <s DO
J—7+1k——jk 5 s +%
IF j<n-X AND U<s
THEN RETURN X
ELSE j «—j +1,k «—jk ,8 s +-’1C-

12. The Borel-Tanner distribution. A distribution Important In queulng
theory, with parameters n >1 (n Integer) and a€(0,1) was discovered by
Borel and Tanner (Tanner, 1951). The probabllities p; are defined by

n cfon-1 f-n
py =

=T e (i>n).

and that the varlance 1s & . The distribu-
- (1-a)®
tion has a very long poslitive tall. Develop a unlformly fast generator.

Show that the mean Is

4. THE BINOMIAL DISTRIBUTION.

4.1. Properties.
X s binomially distributed with parameters n >1 and p €[0,1] If

pi-p) (0<i<n).

P(X=i)= [?

We will say that X Is binomial (n,p).
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10.

11.

Show that for the relection method developed In the text, the expected time
complexity Is O(\/X) and ﬂ(\/i) as A—o0o0 when no squeeze steps are used
and the factorlal has to be evaluated explicitly.

Glve a detalled rejectlon algorithm based upon the constant upper bound of
Lemma 3.4 and the quadratically decreasing talls of Lemma 3.5.

Assume that factorlals are avolded by using the zero-term and one-term Stir-
ling approximations (Lemma 1.1) as lower and upper bounds In squeeze steps
(the difference between the zero-term and one-term approximations of
log(I'(n)) Is the term 1/(12n)). Show that this suffices for the followlng
rejection algorithms to be uniformly fast:

A. The unlversal algorithm of section 1.

B. The algorithm based upon Lemmas 3.4 and 3.5 (and developed in Exer-
cise 8). '

C. The normal-exponentlal rejection algorithm developed In the text.

Repeat exerclse 9, but assume now that factorials are avolded altogether by
evaluating an Increasing number of terms In Blnet's convergent serles for the
log gamma function (Lemma 1.2) untll an acceptance or rejection declslon
can be made. Read first the text following Lemma 1.2.

The matching distribution. Suppose that n cars are parked in front of
Hanna's rubber skin sult shop, and that each of Hanna’'s satlsfled customers
leaves In a randomly plcked car. The number N of persons who leave In
thelr own car has the matching distribution with parameter n:

: 1 " (-1)f .
P(N=t)= — 3} === (0<i<n).
! = 7!
j=0
A. Show this by Invoking the inclusion excluslon principle.

B. Show that lm P (N ==1t)=

n —00 6 i ! ’
Is the limit (Barton, 1958).

l.e. that the Polsson (1) distribution

C. Show that P(N=1)< ,L', l.e. rejectlon from the Polsson (1) distribu-
1!

tlon can be used with rejection constant e not depending upon n.

D. Show that the algorithm glven below lIs valld, and that 1ts eXxpected
complexity Is uniformly bounded In n.
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Lemma 4.1. (Genesis.)

Let X be the number of successes In a sequence of n Bernoulll trials with
success probabllity p, l.e.

n
X = YTy
t =1
where U,, ..., U, are l1d uniform [0,1] random varlables. Then X Is blnomial

(n,p).

Lemma 4.2.

The blnomlal distributlon with parameters n,p has generating function
(1-p +ps )" . The mean Is np, and the varlance Is np (1-p ).

Proof of Lemma 4.2.

The factorlal moment generating functlon of X (or simply generating func-
tlon) Is

k(s) = E(s¥) = [TE(s %Y,
§ =1

where we used the Lemma 4.1 and Its notatlon. Each factor in the product Is
obviously equal to 1-p+ps . Thls concludes the proof of the first statement.
Next, E(X)= k(1)=mnp, and E(X(X-1))= k'(1) = n(n-1)p2 Hence,
Var (X)) = E(X2)—E2(X) = EXX-1)+EX)-E¥X) = np (1-p) . .

From Lemma 4.1, we can conclude without further work:

Lemma 4.3.
Ir X,, TRy X, are lndepe?dent blnomilal (n.,p) ,..., (n;,p) random varl-
ables, then Y3 X; Is binomlal ( 3] 7;,p ).

=1 =1
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Lemma 4.4.(First waiting time property.)
Let G ,,G ... be 11d geometric (p ) random varlables, and let X be the smal-
lest Integer such that

X +1
2G,->n.

=1

Then X is binomial (n,p).

Proof of Lemma 4.4.

G’1 is the number of Bernoulll trials up to and Including the first success.
Thus, by the Independence of the G;'s, G;+ - - - +Gx ., Is the number of Ber-
noulli trlals up to and including the X +1-st success. This number Is greater than

n if and only If among tl}e first n Bernoulll trials there are at most X successes.
Thus,

D! k (n . .
PXLZk)=P(NG>n)= ¥} [j]p’(l—p)”‘J (integer k) .1}

§=1 J=0

Lemma 4.5. (Second waiting time property.)

Let E ,E,,... be 11d exponential random varlables, and let X be the smallest
integer such that

X+1 E;

Py

——— > -log(1-p) .
P2 e g(1-p)

Then X 1s binomial (n,p ).

Proof of Lemma 4.5.

Let Ey<E(5< -+ <E(,) be the order statlstics of an exponentlal distrl-
bution. Clearly, the number of E(;y's smaller than —log(1-p ) is binomially distri-
buted with parameters n and P (F,<-log(1-p ))=1-¢°81~P)=p . Thus, If X Is
the smallest Integer such that E x.,y>-log(1~p), then X s blnomial (n,p)

Lemma 4.5 now follows from the fact (sectlon V.2) that (E(y, . . ., E(y)) Is dis-
tributed as
E, E E E E E
N Rk B R

1)‘-

n'n n-1 n n-1
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4.2, Overview of generators.

A.

The binomlal generators can be partitioned Into a number of classes:

The simple generators. These generators are based upon the direct applica-
tlon of one of the lemmas of the previous sectlon. Typlcally, the expected
complexlity grows as n or as np, the computer programs are very short, and
no addltional workspace s required.

Unlformly fast generators based upon the rejectlon method (Fishman (1979),
Ahrens and Dileter (1980), Kachltvichyanukul (1982), Devroye and Nader-
Isaman! (1980)). We will not bother with older algorithms which are not uni-
formly fast. Fishman’s method Is based upon rejection from the Polsson dls-
tributlon, and 1s explored In exerclse 4.1. The unitversal rejection algorithm
derltved from Theorem 1.1 Is also uniformly fast, but slnce 1t was not
specifically deslgned for the blnomlal distribution, 1t Is not competitive with
tallor-made rejectlon algorithms. Td save space, only the algorithm of Dev-
roye and Naderlsamanl (1980) will be developed in detall. Although this
algorithm may not be the fastest on all computers, it has two deslrable pro-
pertles: the domlnating curve Is asymptotically tight because 1t explolts con-
vergence to the normal distributlon, and it does not require a subprogram
for computing the log factorlal In constant time.

Table methods. The finite number of values make the blnomlal distribution
a good candldate for the table methods. To obtaln uniformly fast speed, the
table slze has to grow In proportlon to n, and a set-up tlme proportlonal to
n 1s needed. It Is generally accepted that the marglnal executlon tlmes of the
allas or allas-urn methods are difficult to beat. See sectlons III.3 and III.4 for
detalls.

Generators based upon recursion (Relles (1972), Ahrens and Dieter (1974)).
The problem of generating a blnomlal (n,p) random varlate Is usually
reduced In constant time to that of generating another binomlal random
varlate with much smaller value for n. This leads to O (log(n)) or
O (loglog(n )) expected tlme algorithms. In view of the superlor performance
of the generators In classes B and C, the principle of recursion will be
described very brilefly, and most detalls can be found In the exercises.

4.3. Simple generators.

Lemma 4.1 leads to the
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Coin flip method

X0

FOR t:=1 TO n DO
Generate a random bit B (B is 1 with probability p, and can be obtained by gen-
erating a uniform [0,1] random variate U and setting B =1y <,)).
X~X+B

RETURN X

This simple method requires time proportional to n. One can use n uniform ran-
dom varlates, but 1t Is often preferable to generate Just one uniform random varl-
ate and recycle the unused portlon. This can be done by noting that a random

blt and an Independent uniform random varlate can be obtalned as

U 1-U
(I[U<p]'m1n(_p—v :

}). The coln flip method with recycling of uniform random

variates can be rewrltten as follows:

[NOTE: We assume that p <1/2.]

X+o0

Generate a uniform [0,1) random variate U.
FOR i:=1 TO n DO

Bl
U-~(1-p)B
reuse the uniform random variate
pB +(1-p Y(1-B) ( )
X+~X+B
RETURN X

For the Important case p -.—-—;—, It suffices to generate a random uniformly distri-

buted computer word of n bits, and to count the number of ones In the word. In
machine language, this can be implemented very efficlently by the standard bit
operatlons.

Inverslon by sequential search takes as we know expected time proportional
to E(X)+1 = np+1. We can avold tables of probabllitles because of the
recurrence relation

(n—1)p

Gana-p) Ot

Piyy = Pi
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where p; = P (X ==1). The algorithm will not be given here. It suffices to men-
tlon that for large n, the repeated use of the recurrence relation could also lead
to accuracy problems. These problems can be avolded If one of the two walting
time algorithms (based upon Lemmas 4.4 and 4.5) Is used:

First waiting time algorithm

X1

Sum «~0

REPEAT
Generate a geometric (p ) random variate G .
Sum «- Sum +G
Xe=X+1

UNTIL Sum >n

RETURN X

Second waiting time method

{SET-UP]
g +—-log(1-p)
[GENERATOR]
Xe0
Sum +~0
REPEAT
Generate an exponential random variate E .

Sum « Sum +
X+X+1

UNTIL Sum >¢q
RETURN X «X -1

E. (Note: Sum is allowed to be 00.)
n-X

Both walting time methods have expected time complexities that grow as np +1.
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4.4. The rejection method.

To develop good dominating curves, it helps to recall that by the central
limit theorem, the binomlal distributlon tends to the normal distribution as
n —o0 and p remalns fixed. When p varles with n 1In such a way that np —c, a
posltive constant, then the blnomtal distribution tends to the Polsson (¢ ) distrl-
bution, which In turn Is very close to the normal distribution for large values of
¢ . It seems thus reasonable to conslder the normal density as our dominating
curve. Unfortunately, the binomlal probabllitles do not decrease quickly enough
for one single normal density to be useful as a domlnating curve. We cover the
binomlal talls with exponential curves and make use of Lemma 3.8. To keep
things slmple, we assume:

1. X\ = np Is a nonzero Integer.

1
2. <=
P = 2
So as not to confuse p with p, =P (X =1 ), we use the notatlon

bi = [f]p‘(x—p)”“ (0<i<n).

The second assumptlon s not restrictive because a binomlal (n,p ) random varl-
able is distributed as n minus a binomial (n,1-p ) random varlable. The first
assumption Is not llmiting In any sense because of the following property.

Lemma 4.6. .
If Y is a binomial (n,p') random varlable with p’ <p, and If conditlonal on
!

Y, Z 1s a blnomlal (n-Y, z;-—p, ) random vartable, then X «— Y +Z 1s binomlal
. -p ,
(n,p).

Proof of Lemma 4.6.
The lemma Is based upon the decomposlition

n n n
X =Ylu<y= S+ Tlp<vcn=Y+Z,

{=1 f =1 =1

where U,, . . ., U, are 1id uniform [0,1] random varlables. [Jj

To recapltulate, we offer the followlng generator for general values of n,p,
but 0<p S-é—:
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Splitting algorithrri for binomial random variates

[NOTE: ¢t is a fixed threshold. typically about 7. For np <t{, one of the waiting time algo-
rithms is recommended. Assume thus that np >¢ ]

1
p'e—— lnp]
n

Generate a binomial (n ,p’) random variate Y by the rejection method in uniformly bound-
ed expected time. -

_nt
I; 4 - ) random variate Z by one of the waiting time methods.
~p

Generate a binomial (n -Y",

RETURN XY +2

The expected time taken by thls generator when np >! 1s bounded from above
]

by c1+c2np < ¢,+2c, for some unlversal constants ¢,,c, Thus, It can't
1-p! —

harm to lmpose assumption 1.

Lemma 4.7.
For Integer 0<: <n (1-p ) and Integer A=np >1, we have

b . r ..
log( A+§ )< - 1 (1-1) z(z+1)'
by 2n(1-p) 2np +1
and
byyi i 24((1-p )-p )i { <
1
o( by )+ 2np (1~-p) > st
where
s = t(t+1)(20+1) (¢1-1)1(20-1)
12n2p? 12n%(1-p )?
and
;= t2(1-1)? 12(1 +1)2
12n%(1-p Y*(n (1-p )1 +1) 12n3p3
by i

For all integer 0<¢ <np, log( ) satisfles the same lnequallties provided that

by,
p 1s replaced throughout by 1-p In the varlous expresslons.
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Proof of Lemma 4.7.

For ¢ =0, the statements are obviously true because equality ls reached.
Assume thus that 0<: <n (1-p ). We have

n . . n
brei {x+i]7’”'(1"’)"'k_' o {>\+i
b)\ o n - l—p
[)\] Px(l"P )n—x :
__=( 4 )i (n_>\)')‘|
(n >\ 1 )N+ )
_ }Eg("n(1~p))
II(1+"—-)
j=0
Thus,
log( Z+' ) = E log(1-————r )— E log(1+—-)
A Jj=0 . ( J=0
<-% 3 5t

(-1 (e +1)
2n(1-p) 2np+i

Here we used Lemma 3.8. This proves the first statement of the lemma. Agaln
by Lemma 3.8, we see that

bt i-1 g 52 J ' 2
log( )< B - — )+ 3 (=L —L—)
by jz=:o n(l-p) 2n?(1-p)? jz—_-.)o np  2n2p?
.2 _ _ . "
4+ @-p)p)
2np (1-p)
Furthermore,
x i__l . 42 -3
log(—= = )z B n (1J_ ) 2J 2 ~ ’ 1-1 )
j=0 P) 2n*(1-p) 3n3(1-p B(1-———)
_ n(1-p)
" . .2 .3
+ 3Ly ]

j=0 " 2n%p? 3n%p?
4+ ((1-p )-p )i
2np (1-p )
This concludes the proof of the first part of Lemma 4.7. For Integer 0<t: <np,

+8-t .
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we have
n
b)\—-i /] - )\-Z
RERRR
A
§~1 :
J
(1=
JI::=[0 np )
— t_ j .
T (1+—)

J =0 n (1—p )

This Is formally the same as an expresslon used as starting point above, provided
that p 1s replaced throughout by 1-p. |

Lemma 4.7 Is used in the construction of a useful function g (z) with the
property that for all z €[¢,7 +1), and all allowable ¢ (-np <:<n(1-p)),

b>\+i
by

g (z) 2 log( )

The algorithm 1s of the form:

REPEAT
Generate a random variate Y with density proportional to ¢?.
Generate an exponential random variate E .
X — | Y] (this is truncation to the left, even for negative values of ¥ )

b
X )+E]

UNTIL [-np <X <n(1-p)] AND [g (Y)<log( 3
by

RETURN X «A+X

The normal-exponential domlnating curve ey suggested earller Is defined n
Lemma 4.8:
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Lemma 4.8.

Let 6,21, 6,21 be glven Integers. Define furthermore

5
oy = Vnp (1=p 1+ —),
np

6
oy = Vp (1=p i+ o=s)
26,
¢ = —
np

Then the function ¢ can be chosen as follows:

3:2

c- (0<z <§))
20,
6, 6%
n(l-p) 20,° (<)
g(z)= 2
- -6,<z <0
e )
b,
- (z <-6)
20,

Proof of Lemma 4.8.

For { =0 we need to show that ¢ >1/(20,%). This follows from

, 46 5, 2
2¢0," = -;p-np (1-p )(1+-4-7-z;) > 48,(1-p) > 26, > 2.

When 0<t <§,, we have
=) o (z-1)(z-2)

2n(1-p) = 2n(1-p) '
1 (1+1) <_z(m—1)
2np+¢ T 2np+6,

By Lemma 4.7,

1og(m) < fz-1)(&-2) z(z-1)

np 2n (1-p) 2np +6,
1 1 0 3 1 1
== — -+ x + I-
(2n (1-p)  2np +4; ) (2n (1-p)  2np+6, ) n(1-p)
26

__.( 1 1 $2+_._];.

— 2n(l-p) 2np+4 np
z? | 25

= 202 mp
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The last step follows by applicatlon of the Inequallty vVi+u <1+—Z—, valld for

u >0, In the following chaln of lnequalltles:

51
14—
1 1 2n

+ —
2n(1-p) 2np +4,

6
2np (1-p J(1+——)
2np

1

>
2np (1-p J(1+—)
2np
1 1

2
(VZnp (ip )(1+;‘f§;)) 2

When 1 >§,, we have

i) o A2 i) < b
2n(l-p) = 2n(1-p)  2np+i —  2np+6,

v

2

By Lemma 4.7,

b : b,(x -2 6
log( ';p )< - 22 =
np 2n(1-p) 2np+§,
1 1 2!
= )
(2np + 2np +6; 0,2 + n(l-p)
o,z 8,

20,2 n(l-p)
When 0>1 >-§,, we have

Lo bnp 4 )< 04D i)

bnp 2np 2n (1-p )1
1 1 o 1t 7
—_ — 1 +
(2np+ 2n (1-p )+52) 2np  2n(1-p )46,
1 1
< = z?
= 2np + 2n (1-p )+6, )
2
<=
20,°

Finally, when 1 <-§,, we see that
_ii4) o bo
2np T 2np

(4 — bt =1 bp(z ~1
I 0 VR a()< 2().
2n(1-p )t = 2n(1-p )+6, ~ 2n(1-p)+6,
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Therefore,
b - b, b,(z -1

log( ZH' ) < —— Ao )

np 2np 2n (1-p )+6,

8.

1 1 2

= 8o~
( 2np + 2n (1-p )+6, 02 2n (1-p )+6,

< S -
~ 20,2

The dominating curve ef suggested by Lemma 4.8 conslsts of four pleces,
one plece per Interval. The Integrals of e over these Intervals are needed by the
generator. These are easy to compute for the exponential talls, but not for the
normal center intervals. Not much will be lost If we replace the two normal
pleces by halfnormals on the positive and negatlve real llne respectively, and
reject when the normal random varlates fall outside [-6,,6,]. This at least allows
us to work with the Integrals of halfnormal curves. We will call the areas under
the different components of e? a; (1<:<4). Thus,

: 2
fo'e) X
[

2 1
¢, = [e *» dx=—2—ecalx/27r,
0

a, = —;-az\/27r )

1- - 1
a3=fe"( P) 20, dx-—-—-e"(“’)———-é e 20,
5, 1
62
2 .
. 20’2 205
a_‘— 5
2

‘We can now summarlze the algorithm:
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A rejection algorithm for binomial random variates

[SET-UP]

oy=vVnp (1-p 1+6,/(4np )),05—vnp (1-p J(1+65/(4n (1-p ))), ¢ «—26,/(np )
1 . 1

ap—;e oy 27r,a2<—;-02\/27r

2

5 g -

s DT 2

- =¥1 20

age—e n(l-p) e 1
1
2
.
20, 2022

a -~ e

2
$+a,+as+azta,
[GENERATOR]
REPEAT
Generate a uniform [0,s | random variate U.
CASE
U<La,:
Generate a normal random variate N; Y—o, | N |
Reject «—[Y >§)]

IF NOT Reject THEN X « LYJ,Vh—E—%Q-—i-c where £ is an ex-
ponential random variate. )
e, <U<a,+ay,:
Generate a normal random variate N; Y —o, | N |
Reject «—[Y >6,)

NS
IFF NOT Reject THEN X « I_—YJ,V-E--1\7/’—— where F is an ex-

ponential random variate. )
e ta,<U<a,+as+ay
Generate two iid exponential random varizzes E wE,.
Y —6,+20,2E /8,
X LYJ VeEo-6,Y /(20,%)46,/(n (1-2
Reject «— False
e taytaz<U:
Generate two iid exponential random varizzies £,.E,.
Y «6,+20,°E, /6, '
X |-Y].V—E,6Y /(202
Reject « False
Reject «+ Reject OR (X <-np| OR [X >n (1-p)]
Reject +— Reject OR [V >log(bn, o x /byp )]
UNTIL NOT Reject
RETURN X
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We need only choose 6,,6, so that the expected number of iteratlons is
approximately minimal. This is done in Lemma 4.9.

Lemma 4.9.

1
Assume that p 5'5 and that as A=np —oo, we have unlformly In p,
b,==0 (\),6,=0 (n), 51/\/X—>oo, 8/vnp —oo. Then the expected number of
iterations 1s uniformly bounded over n >1,0<p S—é—, and tends to 1 uniformly In

P as A—00.
The conditlons on §;,6, are satlsfled for the followlng (nearly optimal)
cholces: :
128np
6, = maxl,\/n 1-p Jlog(———"—)1! ;
1 k ( p(-p) g(sm(l_p)))}

5, = kmax(l_,\/ np (1-p )1og(1—28%1—‘£-)-)) } .

Proof of Lemma 4.9.
We first observe that under the stated condltlons on §,,6,, we have

oy = Vp (1=p J(1+0(1)) , 0, = Vnp (1-p )(1+0 (1)) ,

c =o0(1),

A/ T 0 1)) 0y = 4 / A G40 ),

a,=
2np (1-p) ‘%H{I—O—E;—)
ag = ———5—1——(1+o (1)e Zrp-?
_ 2np(1-p) ‘%ﬁf{%
a4 == ‘_‘_6‘2_"“'(1’{‘0 (1))e =rpii-e

aG1+ag~ a,,a,+a,~ a,,
a,+ta,+az+a, ~ vV2rnp (1-p) .

The expected number of lterations in the algorithm is
(a 1+a2+a3+a4)bm, ~ Vemnp (1-p))/V2mnp 1-p) = 1. All o (.} and ~ symbols
inherit the uniformity with respect to p, as long as A—oco. The uniform bounded-
ness of the expected number of lterations follows from this.

The particular cholces for 51,52 are easlly seen to satisfy the convergence con-
ditlons. That they are nearly optimal (wlith respect to the minimization of the
expected number of iterations) Is now shown. The minlmization of a,+a s would
provlde us wlith a good value for 51. In the asymptotlic expansions for a,ag, 1t Is
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now necessary to conslder the first two terms, not Just the main term. In particu-

lar, we have
/ mnp (1 mnp (1-p) o (1+ / mnp (1—p) (9+0 (1))5

(1+a(1) 61
P 2np (1- P) 2np(1-p) ~ 2np (1- p) 2np(1-p)
s 6, 8

Setting the derlvatlve of the sum of the two right-hand-side expressions equal to
zero glves the equatlon

5 2
512 I T 5 2 \/—
e @ 279 {1-p ) . ,/"——‘
e = (1+———— ) np (1-p)
np (1-p ) np ( o(1-p Wr
6,2
Disregarding the term 1" with respect to ——(-i——)_ and solving with respect to
np(1-p

0, glves

by = \/nP (1-p )log(f%)

A sultable expression for §, can be obtalned by a similar argument. Indeed,

. / m™p (1-p) b,
ay+a, = 5 (1+ an (]_—-p))

(1+0(1))5,2
2np(A-p) , “Emp(ip)
8

+ (1+0(1))

Disregard the o (1) term, and set the derlvative of the resultlng expresslon with
respect to 62 equal to zero. Thls gives the equation

55

e 22 (1-p) 2 8
———— = 2(np (1-p J4+8,2) [ ———— ~ A [ —————6,%.
4n (1-p) (np (1=p )+6,7) mnp (1-p) mnp (1-p)

If ~ 1s replaced by equallty, then the solution with respect to 4, Is

128n (1-
6= A/ np (1-p )log(—-’lw%i)-) o

' Lemma 4.9 1s cruclal for us. For large values of np, the rejectlon constant Is
nearly 1. Also, slnce 6, and 9§, are large compared to the standard devlation
vnp (1-p ) of the distributlon, the exponentlal talls float to inflnity as np —co.
In other words, we exlt most of the time with a properly scaled normal random
variate. At thls polnt we leave the algorithm. The Interested readers can flnd
more information In the exercises. For example, the evaluation of b,,p +i/bnp
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takes time proportlonal to 1+ |7 |. This Implies that the expected complexity
grows as vnp (1-p ) when np —oco. It can be shown that the expected complexity
Is uniformly bounded If we do one of the following:

A. Use squeeze steps suggested In Lemma 4.7, and evaluate bnp +,~/bnp expli-
cltly when the squeeze steps fall.

B. Use squeeze steps based upon Stirling’s serles (Lemma 1.1), and evaluate
b,,p +f /b,,p explicitly when the squeeze steps fall.

C. Make all decislons involving factorials based upon sequentially evaluating
more and more terms In Blnet's convergent serles for factorials (Lemma 1.2).

D. Assume that the log gamma function Is a unit cost function.

4.5. Recursive methods.

The recursive methods are all based upon the connectlon between the bino-
mlal and beta distributions given In Lemma 4.6. This Is best visualized by consid-
erlng the order statistles U(1)< e L U(n) of 11d uniform [0,1] random varlables,
and noting that the number of U y's In [0,p] Is binomlal (n,p ). Let us call this
quantity X . Furthermore, U(,-) Itself 1s beta (¢,n +15i) distributed. Because U(,-)

Is approxlmately

, We can begin with generating a beta (¢ ,n 4+1-¢) random

n

variate Y with ¢ == L(n +1)p_]. Y should be close to p. In any case, we have
gone a long way toward solving our problem. Indeed, if Y <p, we note that X 1s
equal to ¢ plus t,he number of U(,y's In the Interval (Y ,p], which we know Is

binomlal (n -1, ’;

) distributed. By symmetry, If Y >p, X is equal to ¢ minus

a binomlial (z-1, ) random varlate. Thus, the following recursive program

Y
can be used:
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Recursive binomial generator

[NOTE: n and p will be destroyed by the algorithm.)
X «0,5+—+1 (S is a sign)
REPEAT
IF np <t (t is a design constant)
THEN

Generate a binomial (n ,p ) random variate B by a simple method such
as the waiting time method.
RETURN X «~X +SB

ELSE
Generate a beta (¢ ,n +1~t ) random variate ¥ with ¢ = [(n +1)p].
X=X +5
IFY<p

p-Y

1-Y
ELSE § - ,n —i-1,p «-—}-’T}”—

THEN n «—n -t ,p «—

UNTIL False

In this slmple algorithm, we use a uniformly fast beta generator. The slmple
blnomial generator alluded to should be such that Its expected time 1s O (np ).
Note however that 1t 1s not cruclal: the algorithm works fine even if we set t =0

and thus bypass the slmple binomlal generator. The algorithm halts when n =0,
which happens with probabllity one.

Let us glve an Informal outilne of the proof of the clalm that the expected
time taken by the algorithm Is bounded by a constant times log(log(n )). By the

t(n—1)

propertles of the beta distribution, Y —p 1s of the order of , l.e. 1t 1s

n
approximately vp (1-p)/n . Since Y Itself Is close to p, we see that the new

values for (n,p) are elther about (n(1-p),Vp/((1-p)n)) or about
(np,v(1-p)/(pn)). The new product np Is thus of the order of magnitude of

np (1-p ). We see that np gets replaced at worst by about vnp In one ltera-
tion. In k lteratlons, we have about

~k
(np )% .
Since we stop when this reaches ¢, our constant, the number of lterations should
be of the order of magnitude of

log(np )
( log(t ) )
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This argument can be formallzed, and the mathematically incllned reader s
urged to do so (exercise 4.7). Since the loglog function Increases very slowly, the
recursive method can be competltive depending upoh the beta generator. It was
preclsely the latter polnt, poor speed of the pre-1975 beta generators, which
prompted Relles (1972) and Ahrens and Dleter (1974) to propose slightly different
recursive generators In which ¢ Is not chosen as l_(n +1)pJ, but rather as
(n 4+1)/2 when n s odd. This lmplies that all beta random varlates needed are
symmetric beta random varlates, which can be generated qulte efficiently.
Because n gets halved at every lteration, thelr algorithm runs In O (log(n )) time.

4.6. Symmetric binomial random variates.

The purpose of this section s to polnt out that in the case p =% 2 single

normal domlinating curve suffices In thé rejectlon algorithm, and to present and
analyze the following simple rejection algorithm:
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Rejection method for symmetric binomial random variates

[NOTE: This generator returns a binomial (2n ,-3—) random variate.]
[SET-UP]

s «—1/\/-2_(?‘_—?2—11—_"’):‘3,6?—3 +—i—, ¢ +2/(1+8s)

[GENERATOR]

REPEAT

Generate a normal random variate N and an exponential random variate E .
Y +—oN, X «—round(Y)
Te—E+c-2N24p L x?

2 n
Reject —[ | X | >n]
IF NOT Reject THEN :

X'4
J

6n 3(1~( J.ﬂn_‘_l)ﬁ)
IF NOT Accept THEN
Xz
2n2]
IFF NOT Reject THEN

Accept —[T <~

Reject «—{T >

b 2
Accept —{T >log( niX )+2{——]
b, n

UNTIL NOT Reject AND Accept
RETURN X «—n +X

The algorithm has one qulck acceptance step and one quick rejectlon step
designed to reduce the probability of having to evaluate the final acceptance step
which involves computing the logarlthms of two binomlal probabllities. The vall-
dity of the algorithm follows from the following Lemma.
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Lemma 4.10.

Let by, ..., b,, be the probablliitles of a binomlal (2n,p) distributlon.
Then, for any o>s,

(13 ]+=y
) < c_.__.___._2_...
n - 20‘2

bn +1

log( p

(Integer ¢ , |+ | <n ),

where ¢ =1/(8(0%-s2)). Also, for all n >1¢ >0,

_ 1 : S log( n -+ )+_ S 1

1-1 n 2’
6n3(1__( )2) . n 2n
n

Proof of Lemma 4.10.

‘We wlll use repeatedly the followlng fact: for 1>z >0,

3 _ 3
-2z _____2_3;_..__ < log(l_m_) < -2z _EE_ .
3(1-z%) 1+z 3

—%xz < log(l+z)-z < 0.

The first Inequality follows from the fact that log( 1~:v) has serles expanslon
z

-2(z +-él-x3+-§—x5+ -+ ). Thus, for n >1 >0,

| 1—-1
nin! - 1
log( L) = log( : —) = log( —)
n (n +1 )'(n'—'l) Jl-}l 1+_-_7_ 1+__2_
n n
j
{-1 1__ 2
=Y (log( )+ )—(log(1+—-)--—)———
j=t g4l 7
n
)
1
== C,"’f‘d" -";z'— .
‘We have

1 '1:2 V
O4+—(—) > ¢, +d.
PP 2 e+,

2 (Lypa-(Lyyiro
3 n

foi

J=1

2 —-(1 (=L )2)‘ Z(

J==1
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> ——(1 ( ) yl—e
: 4n
Thus,
: 2
bn+i z‘2 'i2 z‘2 (Il |+ )
log(——) < ~ bt = < -2 (7| <n),
by, n o 2n? 252 20? il
where
1.
u ———
. ( +2) u?
¢ = sup .
+>0 202 252

Assumling that o>s, thls supremum Is reached for

52 1
U = ————me | ==

2(02-s2) 8(0%-s2)

The domlnating curve suggested by Lemma 4.11 Is a centered normal den-
sity with varlance o2. The best value for ¢ Is that for which the area v2moe® 1s
minlmal. Setting the derlvative with respect to o of the logarithm of this expres-
slon equal to O glves the equatlon ’

2=l st = 0.
2

The solution Is ¢ = jll-+s V1+1/(18s2%) = -:11-+s -+o0 (1). It Is for this reason that

the value o=s +—‘1;- was taken in the algorithm. The corresponding value for ¢ is

2/(14+8s ).
\/ﬁ\/g= 1 as

n —oo. Assuming that b, /b, takes tlme 1+ |7 | when evaluated explicitly, 1t
Is clear that without the squeeze steps, we would have obtalned an expected time
whlch would grow as Vn (because the ¢ Is distributed as o tlmes a normal ran-

dom wvarlate). The efficlency of the squeeze steps Is hlghlighted In the following
Lemma.

The expected number of iteratlons Is b, V2moe® ~

Lemma 4.11.

The algorithm shown above Is uniformly fast In n when the qulck accep-
tance step Is used. If In addition a qulick rejection step Is used, then the expected
time due to the expliclt evaluatlon of b, ; /b, 1s O(1/Vn ).

—_—
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Proof of Lemma 4.11.

Let p () be the probabllity that the Inequality In the quick acceptance step
Is not satisfled for fixed X =z. We have P(|X | >1+nV5/8)=0 (r™") for

some r >1. For |z | <1+n v5/6, we have In view of | Y2-z?| <( |z | +%)/2’

(z 2_.}__—'12.1—)

2 4

4
p(z) < P(-E+c- >
20 n ns
: 1 1 1 4
< P(E<c +——-2—+—|-i2-‘—+z2(—___2.)+:’£_§)
80 40 n 20 n
4
40° n 202" n3
1 3

= 0(n 2)+ |z |0 ™)+a?0(n *)+240 (n™0) |

Thus, the probabllity that a couple (X ,E ) does not satisfy the qulck acceptance
condition 1s E(p(X)). Stnce E(|X |)=0(0)=0/n LE(XH=0(n) and
E(X*%)=0(n?%, we conclude that E(p (X )=0 (1/Vn ). If every ‘time we
rejected, we were 1o start afresh with a new couple (X ,E ), the expected number
of such couples needed before halting would be 1+0 (1/ vn ). Using this, 1t Is
also clear that In the algorithm without qulck rejectlon step, the expected time Is
bounded by a constant times 1+E (| X | p (X)). But

1

E(X |pX) S E(X 1) x)5rsnvam)+E(1 X O )
3

+E(X2)0 (n™H+E(| X |30 (n 2)+E(| X |50 (n™?)
= 0(1).

This concludes the proof of the first statement of the Lemma. If a qulek rejection
step 1s added, and ¢ (z ) Is the probabllity that for X =z, both the qulck accep-
tance and re)ection steps are falled, then, argulng as before, we see that for

|z | <1+n V5/8,

z* 2?2
(@) s S+

Thus, the probabllity that both Inequalitles are violated ls
' EX* 4 E(X?
nd n?

E(g(X)) < +P(|X [21+n\/5/6)=0(-1n-).

The expected time spent on explicitly evaluating factorials 1s bounded by a con-
stant times 1+E (| X | ¢ (X )=0(1/Vn ). B
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4.7. The negative binomial distribution.

In sectlon X.1, we Introduced the negatlve blnomlal distribution with param-
eters (n,p ), where n 2>1 Is an Integer and p €(0,1) Is a real number as the distri-
butlon of the sum of n 11d geometric random variables. It has generating function

p n
(——)
1-(1-p)s

Uslng the blnomlal theorem, and equating the coefficlents of s' Wwith the proba-
bilitles p; for all ¢+ shows that the probabllitles are

n+1-1
)

P(X:"i):Pi:[ ]p"(—1+p)"= Jp"(l—p)‘ (1 20) .

)
When n =1, we obtaln the geometric (p) distributlon. For n =1, X s distri-
buted as the number of fallures In a sequence of Independent experiments, each
having success probabllity p, before the n-th success Is encountered. From the
propertles of the geometric distrlbution, we see that the negative blnomial distri-
butlpn has mean —M and varlance —TL(—I-;p—-l
p P

Generatlon by summing n 1ld geometric p random varlates ylelds at best an
algorithm taking expected time proportional to n. The sltuation Is even worse If
we employ Example 1.4, In which we showed that 1t suffices to sum N 11d loga-
rithmic serles (1-p) random varlates where N Itself Is Polsson (\) and

1
A=n log(-l-). Here, at best, the expected time grows as E(N) = n log(—p—).
p
The property that one can use to construct a uniformly fast generator ls
obtalned In Example 1.5: a negative blnomlal random varlate can be generated as
1-~
a Polsson (Y) random variate where Y In turn Is a gamma (n ,—p—) random

variate. The same can be achieved by deslgning a uniformly fast rejection algo-
rithm from scratch.

4.8. Exercises.

1. Binomial random variates from Poisson random variates. This exer-
clse I1s motivated by an ldea first proposed by Fishman (1979), namely to
generate binomlal random varlates by relectlon from Polsson random varl-
ates. Let b; be the probabllity that a blnomilal (n,p ) random vartable takes
the value 7, and let p; be the probabllity that a Polsson ((n +1)p ) random
varlable takes the value 1.

A. Prove the cruclal Inequallty sup b; /p; < e/ +1)/y/1-p , valid for
H
all n and p. Since we can without loss of generallty assume that

P Sé—’ this Implles that we have a uniformly fast binomlal generator If
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we have a unlformly fast Polsson generator, and If we can handle the
evaluation of b,- /p; \n unlformly bounded time. To prove the Inequallty,
start with Inequalitles for the factorlal glven In Lemma 1.1, write 7 gs

(n+1)p+z, note that z<(n+1)(1-p), and use the Inequallty
144 >e¥/0+%) valid for all u >-1.

B. Give the detalls of the rejectlon algorithm, In which factorlals are

squeezed by using the zero-term and one-term bounds of Lemma 1.1,
and are expllicitly evaluated as products when the squeezing falls.

C. Prove that the algorithm glven In B s unlformly fast over all
n >1,p <1/2 if Polsson random varlates are generated In uniformly
bounded expected tlme (not worst case time). '

Bounds for the mode of the binomial distribution. Conslder a bino-

mial (n,p) distribution In which np Is integer. Then the mode m ls at np,
and

_ 1, 1
[ n] m yrom < e 12(n-+1) n2p (1-p )+n +1 2
pT(1-p)tT" < < .
m V2rnp (1-p) Vernp (1-p)

Prove this inequality by using the Stirllng-Whittaker-Watson Inequality of
Lemma 1.1, and the Inequalities e */0+¥)<144 <e¥, valld for u >0 (Dev-
roye and Naderisaman!, 1980).

Add the squeeze steps suggested In the text to the normal-exponential algo-
rithm, and prove that wlth thls addltlon the expected complexity of the

algorithm Is uniformly bounded over all n >1, 0<p _<_-;—, np integer (Dev-

roye and Naderlsamani, 1880).

1
A contlnuation of the previous exercise. Show that for fixed p 5—2—, the

expected time spent on the expllelt evaluatlon of by, ;/b,, Is
O(1/Vnp(1-p)) as n—oo. (This Implies that the squeeze steps of Lemma
4.7 are very powerful indeed.) '

Repeat exercise 3 but use squeeze steps based upon bounds for the log
gamma function given In Lemma 1.1.

The hypergeometric distribution. Suppose an urn contalns N balls, of
which M are white and N-M are black. If a sample of n balls Is drawn at
random without replacement from the urn, then the number (X ) of white
balls drawn 1s hypergeometrically distributed with parameters n ,M ,N. We

PX=1)= (max(0,n -N +M)<1: <min(n ,M)) .

%)
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Note that the same dlstrlbutlon is obtained when n and M are Inter-
changed. Note also that if we had sampled with replacement, we would have

obtalned the binomlal (n ,-—AN/{) distributlon.

A. Show that If a hypergeometric random varlate Is generated by rejectlon
M
from the binomlal (n ,-N-) distribution, then we can take (1—77\1[—)‘” as

reJectlon constant. Note that thls tends to 1 as n2/N —o0.

B. Using the facts that the mean s n-%{—, that the varlance o? s

N-n M
L n—]\—f-(l—-jl/[—), and that the distribution 1s unimodal with a mode at
M4
(n+1) Nz |’ give the detalls for the unlversal rejection algorithm of

section X.1. Comment on the expected time complexlty, l.e. on the max-

Imal value for (cB )2/3 where B Is an upper bound for the value of the
distribution at the mode.

C. Find a functlon ¢ (x) conslstlrig of a constant center plece and two
exponential talls, having the propertles that the area under the function
is uniformly bounded, and that the function has the property that for

every ¢ and all xe[i—-;-,z'+%), g (z)2 P (X =1). Give the correspond-

Ing rejectlon algorithm (hint: recall the unlversal rejection algorithm of
section X.1) (Kachitvichyanukul, 1982; Kachltvichyanukul and
Schmelser, 1985).

7. Prove that for all constant ¢ >0, there exlsts a constant C only depending
upon ¢ such that the expected time needed by the recursive binomlal algo-
rithm glven In the text s not larger than Clog(log(n +10)) for all n and p.
The term "10” is added to make sure that the loglog functlon is always
strictly positive. Show also that for a fixed p €(0,1) and a fixed ¢ >0, the
expected tlme of the algorithm grows as a constant times c log(log(n)) as
n —o00, where ¢ depends upon p and ¢ only. If time Is equated "with the
number of beta random varlates needed before halting, determline c .

5. THE LOGARITHMIC SERIES DISTRIBUTION.

5.1. Introduction.

A random varlable X has the logarithmic series distribution with
parameter p €(0,1) If

Lot (i=1,2..),

P(X=i)=p; ==
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where a =-1/log(1~p ) 1s a normalization constant. In the tall, the probabllitles
decrease exponentlally. Its generating function is

L i i log(i-ps)
“,2_31 phel = log(1-p )

From this, one can easlly find the mean ap /(1-p) and second moment
ap /(1-p ).

5.2. Generators.

The material In this section Is based upon the fundamental work of Kemp
(1981) on logarithmlc series distrlbutions. The problems with the logarithmic
serles distributlon are best highlighted by noting that the obvious 1nverslon and
rejection methods are not uniformly fast.

If we were to use sequentlal search In the inverslon method, using the
recurrerice relation

pi = (1—%)1)1),-_1 (122),

the Inverslon method could be lmplemented as follows:

Inversion by sequential search

[SET-UP)
Sum «-p /log(i-p)
[GENERATOR)]
Generate a uniform [0,1] random variate U.
X1
WHILE U > Sum DO
U«~U-Sum
XeX+1

p (X—l)
- S LAl
Sum um X

RETURN X

The expected number of comparisons required i1s equal to the mean of the
distributlon, ap /(1-p ), and this quantity Increases monotonically from 1 (p |0) to
0o (p 1o0). For p <0.95, 1t Is difficult to beat thls simple algorithm In terms of
expected time. Interestingly, If reJectlon from the geometrlc distribution
(1-p)p' (1 21) 1s used, the expected number of geometric random varlates
required Is agaln equal to the same mean. But because the geometric random
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varlates themselves are rather costly, the sequentlal search method Is to be pre-
ferred at this stage.

We can obtaln é one-line generator based upon the following distributional
property:

Theorem 5.1. (Kendall (1948), Kemp (1981))
Let U,V be 1id uniform [0,1] random variables. Then

X~ ‘ 14 —10e(V)
| log(1~(1-p)Y)

has the logarlthmlc serles distributlion with parameter p.

Proof of Theorem 5.1.

The logarithmlc serles distribution Is the distrlbutlon of a geometric (1-Y)
random varlate X (l.e. P(X =1 | Y)=Y (1-Y)'"! (¢ >1)), provided that Y has
distributlon function

F(y)=} 1 dz=£’§(—tg—)- 0<y<p).
o (2 -1)log(1-p) log(1-p) -

This can be seen from the integral

} s(1-y) dy = log(1-ps )
o (1-ys )(y -1)log(1~p ) log(1-p)

and from the fact that the generating functlon of a geometric (1-Y ) random
s(1-Y)
(1-Ys) v
obtalned by the Inversion method as Y «1-(1-p)” where U is a uniform [0,1]
random varlable. [Jj

varlate 1s . A random varlable Y with distribution function F can be

Kemp (1981) has suggested two clever tricks for accelerating the algorithm
suggested by Theorem 5.1. First, when V >p, the value X 1 1s dellvered
because

V >p 21-(1-p)V .

For small p, the savings thus obtalned are enormous. We summarize:
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Kemp's generator with acceleration

[SET-UP]

r —log(1-p)

[GENERATOR]

X1

Generate a uniform [0,1] random variate V.

FV2p '
THEN RETURN X
ELSE

Generate a uniform [0,1) random variate U .

RETURN X « 1+—-li’§—(—v—)u—-
log(1~-¢™)

Kemp's second trick Involves taking care of the values 1 and 2 separately. He
notes that X'=1 If and only If V>1-e’V, and that X €{1,2} if and only if
V >(1-¢"Y)? where r Is as In the algorlthm shown above. The algorithm Incor-
porating thls Is glven below.

Kemp's second accelerated generator

(SET-UP)
r +log(l-p )
[GENERATOR]
X1
Generate a uniform [0,1] random variate V.
IFV2p
THEN RETURN X
ELSE
Generate a uniform [0,1) random variate U .
'q —]e U
CASE

log(q )
¢*<V <gq :RETURN X «1
V>q : RETURN X —2

V <¢®:RETURN X « tH log(V')

L
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5.3. Exercises.

1. The following logarithmlc serles generator s based upon rejectlon from t;he
geometric distributlon:

Logarithmic series generator based upon rejection

REPEAT

Generate a uniform [0,1] random variate U and an exponential random
variate E .

E
xe [-log(p) }

UNTIL UX <1
RETURN X

Show that the expected number of exponentlal random varlates needed lIs
equal to the mean of the logarithmlec serles distribution, l.e.

-p /((1-p )log(1-p )). Show furthermore that thls number Increases monoton!-
cally to oo as p 11.

2. The generalized logarithmic series distribution. Patel (1981) has pro-
posed the following generallzation of the logarithmic sertes distribution with
parameter p:

p'(-p)" (k)

Pi = ~t log(1-p )T (¢ )T (bt -4 +1) (621).

Here b >1 1s a new parameter satisfying the lnequallty
b bp b-1

o<pb( <1.

Suggest one or more efficlent generators for thls two-parameter family.
3. Conslder the following discrete distribution:

b == (<i<k),
ct
where the integer £ can be considered as a parameter, and ¢ !s a normaliza-
tlon constant. Show that the followlng bounded workspace algorithm gen-
erates random varlates with thils distribution:
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REPEAT
Generate iid uniform [0,1] random variates U,V .
Y —(k+1)Y
X—lv]

UNTIL 2VX <Y

RETURN X

Analyze the expected number of lterations as a function of k. Suggest at
least one effective Improvement.

6. THE ZIPF DISTRIBUTION.

68.1. A simple generator.

In lingulstics and soclal sclences, the Zipf distribution Is frequently used to
model certaln quantities. Thils distributlon has one parameter a¢ >1, and 1s
defined by the probabllities

L (i >1)

Pi =W

where

fa)= 3 ——
f=11
1s the Rlemann zeta function. Simple expressions for the zeta functlon are known
in speclal cases. For example, when a is Integer, then
22a—17r2a
2¢) = ———B

«2e) (2a) ¢
where Ba Is the a-th Bernoulll number (Titchmarsh, 1951, p. 20). Thus, for
a =2,4,6 we obtaln the probability vectors {6/(m)?},{90/(mi)*} and {945/(m )°}
respectively. _

To generate a random Zipf varlate in uniformly bounded expected time, we

propose the rejectlon method. Conslder for example the distribution of the ran-

dom varlable Y « LU’I/(“‘I) where U 1s uniformly distributed on [0,1]:

P(Y=i)=—2

(1+1)a—1((1+—1;)a_1_1) (21
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This dlstributlon 1s a good candldate because the probabllities vary as (a -1)¢~*
as 1 —oo. For the sake of simpliclty, let us define ¢; =P (Y =1 ). First, we note
that the rejectlon constant ¢ Is

Hence, the following rejection algorithm can be used:

A Zipf generator based upon rejection

[SET-UP]
b 20t
[GENERATOR]
REPEAT

Generate iid uniform [0,1] random variates U, V.

1
o]
1 a-1

T—(1+=
untL VxLt< L
b-1 — b
RETURN X

Lemma 61

The relectlon constant ¢ In the rejectlon algorlthm shown above satlsfles the
following properties:

A. sup ¢ < 12
a2>2 2
2
B. sup ¢ < :
1<a<2 log(2)
C. Iime =1.
a —COo
D. llmc¢ = 1

all log(2) '
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Proof of Lemma 6.1.
Part A follows from

a-1
c <2 8 12
20-1_1 #? 2
Part B follows from
< 24-—1 _ (a_l)zﬂ-‘l
¢ — o0 - a‘l_l
(2°7'-1)fz~% da
1
(a-1)2°t  gt-! 2

~ (a-1log(2) ~ log(2) ~ log(2) _
Part C follows by observing that (e )—1 as a oo. Flnally, part D uses the fact
that ¢(a) ~ 1 as al1 (In fact, ¢(a)-
and Watson, 1(19;7, p. 271). i

1 —, Euler’s constant (Whittaker

6.2. The Planck distribution.
The Planck distribution Is a two-parameter distributlon with density

f(z)=

ba+1 xa
I'(a+1)g(a+1) b2

(z >0) .
Here a >0 Is a shape parameter and b >0 Is a scale parameter (Johnson and
Kotz, 1970). The density f can be wrltten as a mixture:

# 00 1 xae—ibz ('ib )a.+1
f (z) ;'gl ia+1§(a +1) (e +1)

In view of this, the followlng algorithm can be used to generate a random varlate
with the Planck distribution.

Planck random variate generator

Generate a gamma (a +1) random variate G .
Generate a Zipf (¢ +1) random variate Z .

G
RETURN X A
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6.3. The Yule distribution.

Slmon (1954,1960) has suggested the Yule distribution as a better approxi-
matlon of word frequencles than the Zlpf distribution. He defined the discrete dls-
tribution by the probabllities

1

pi =c(a)f(1-u) "l (1 >1),
Q

where ¢ (a ) 1s a normallzation constant and ¢ >1 Is a parameter. Using the fact
that thils 1s a mixture of the geometric distribution with parameter e~Y/(a-1)
where Y Is exponentlally distributed, we conclude that a random variate X with
the Yule distribution can be generated as
E
X~ 1- N ,

log(1—e %°1)

where F ,E#* are 11d exponential random varlates.

6.4. Exercises.

1. The digamma and trigamma distributions. Sibuya (1979) Introduced
two distributlons, termed the digamma and trigamma dlstributions. The
dlgamma distrlbutlon has two parameters, a,c satlsfylng ¢ >0,a >-1,
a +c¢ >0. It Is defined by

_ 1 a(a+1) - (a+1-1)

Wa+c)y(c) i(a+c)a+c+1) - (a+c+i-1)

Here 9 1s the derlvative of the log gamma functlon, l.e. ¥=I"/I'. When we

let a |0, the trlgamma distribution with parameter ¢ >0 Is obtalned:

. 1 (z—1)

Y(c) tic(c+1) - (c+i-1)

For ¢ =1 thls 1s a zeta dlstribution. Discuss random varlate generatlon for

this famlly of distributlons, and provide a uniformly fast rejectlon algorithm.

pi (i >1) .

Ds (¢ 21).



