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ABSTRACT

1f (Xl,Y1L . (Xh,fh) is a sequence of independent identically distri-
buted & X8 -valued random vectors then Nadaraya (1964) and Watson (1964)
proposed to estimate the regression function m(x) = 8{Y1|X =} by

m(@) = L VR(@-X)/h ) L K(@-X) )

where K 1is a known density and {hn} is a sequence of positive numbers
satisfying certain properties. In this paper a variety of conditions are
given for the strong convergence to 0 of essxsuplmn(X)-m(X)} (here X
is independent of the data and distributed as Xl). The theorems are valid
for all distributions of Xl and for all sequences {hn} satisfying hn-+0
and nh:li/log n>o ,

1. INTRODUCTION

In regression function estimation we are concerned with approximations
of the regression function m(x) = &{Y|X = «} that are constructed from a
sample of independent identically distributed random vectors (COT0 £ FRTRY
(X Y, ) with the same distribution as the & x@ - valued random vector (X,Y).
In th:s paper some new properties of the kernel estimate

* Part of this work was supported by USAF Grant 77-3385 while the author was
at the University of Texas, Austin.
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n n
m (@) = L Y. K((z-X)/h )/ L K((=-X)/h) , ¢))

proposed by Nadaraya (1964) and Watson (1964), are highlighted. In (1) X
is a nonnegative integrable function and {hn} is a sequence of positive
numbers satisfying

hn-*O (2)
and
nh:il-)oo . (3)

The main theme pursued in this paper is the strong uniform convergence of m,
to m, that is, when does

essAsuplmn(X)-m(X) | +0 a.s. ? (4)

Throughout this paper, A is a fixed subset of 6%  and the essential su-
premm is with respect to the restriction of the distribution of X to A.
We are particularly interested in finding weak conditions on the distribution
of (X,Y) that imply (4). We do not want to assume that X or Y have
densities. Results regarding (4) that are based on the existence of these
densities can be found in Nadaraya (1964, 1965) and Greblicki (1974) for the
case d=1. More recently, Nadaraya (1970) showed that (4) holds for d=1
if A=[a,b] and (2), (3) are satisfied, and if the following is true:

X has a continuous density f , (5)
inf f(x) >0 , (6)
m is f:ont:lnuous on & )
|7] se <= a.s., (8)
K 1is a bounded density on ® satisfying |x|K(z) >0 as |z|+>, (9)
K 1is of bounded variation , (10)
T exp(-on h2) <» for all a>0 . an
n=1 n

The main result of this paper is that the conditions (5-6), (8), (9), and
(11) can be considerably weakened and that (10) can be omitted in order for
(4) to hold. Some of the techniques we develop can also be used to obtain
pointwise consistency results, cf. Nadaraya (1964), Watson (1964), Schuster
(1972), Greblicki (1974), Noda (1976) and Devroye and Wagner (1978).

2. MAIN RESULTS

We will treat the simplest cases first and gradually obtain more general
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results. Throughout it is assumed that X satisfies

CONDITION 1. (i) O<K(x) <K* for some K*<eo ,

(i2) K(xz) = L(ll Il ) for some nonincreasing function L; | .|
i8 one of the standard Qp norms on &4 (p21; p integer
or p=%),

(ii1) P +0 as ure |
(iv) L(u*) >0 for some wu*>0 .

The restriction (i) that Kk be of the radial type is not unreasonable;
what is interesting is that X can be non-integrable. For example, for d=1,

L(u) = 1/(1+ulog(l4uw))

is not integrable but satisfies Condition 1.

No continuity restrictions are put on K. Some of the results presented
below can be generalized towards slightly broader classes of functions X but
the cost of doing so outweighs the advantages.

The probability measure of X is denoted by wu. The only restriction put
on u 1is the following:

CONDITION 2. There exist a, b>0 such that

12f u(s(x,r)) Zard, all re[0,b] ,

where S(xz,r) 18 the closed sphere (under the & p norm) with centre x and
radius r.
Condition 2 insures that each neighbourhood of every x in A has suffi-
cient probability. It imposes a restriction on the shape of 4 and on u.
If 4 is a sphere and u has density f, then Condition 2 holds iff
essAinf f(x) >0 ,

cf. (6). Condition 2 also implies that A must be contained in supp(y), the
support of u, that is, the set of all x such that u(S(x,r)) >0 for all
r>0 .

The existence of m follows if &{|Y|} <=, and this will always be as-
sumed. Of course, m is only defined up to u-null sets.

The conditions of convergence depend heavily on the joint distribution of
X and Y. We say that the observations (the Y, ) are

deterministic if Y = m(X) a.s.,

uniformly bounded if |Y-m(X)|<c a.s. for some c<w ,



182] DEVROYE [Vol.6, No.2

wniformly gemeralized Gaussign if

2,2
ess sup &{'e)‘(y-m(x))IX} <2 /2(1-“'0), all |A|l<1/e,

for some 020 and 20,
uniformly Lq (>0 1is fixed) if
ess, sup &{|¥-m(x)|¥|x}<c for some c<w .

If the observations are uniformly bounded or uniformly Gaussian (i.e.,given
X,Y is Gaussian with variance UZ(X), and ess sup oz(X) <o ), then they

are uniformly generalized Gaussian which in turn implies that they are uni-
formly Lq for all ¢>0 .

LEMMA 1. The deterministic case. If the observations arve deterministic,
if Conditions 1 and 2 hold, if A <8 a compact set, if some version of m
18 bounded and continuous on supp(y) and if (2) holds and

'nhf/log n+o (12)
then (4) follows.
We notice here that Lemma 1 remains true if Condition 1 (i) is dropped
(the boundedness of X ). The fact that X need not even be integrable seems
to indicate that the shortest route to the study of (1) is not via Parzen-
density estimation where the integrability of X is required.

THEOREM 1. Let the observations be uniformly generalized Gaussian, let condi-
tions 1, 2, (2) and (12) hold, let A be a compact set and let some version
of m be bounded and continuous on supp(u). If K takes only finitely many
(k+l) values, then (4) obtains. If the observations are just uniformly in
Lq for some q=22, and if

nhdn/nt(psd)k/(Q"l) o (13)
then
ess sup]mn(X)—m(X)|->0 in probability. (14)
A
If furthermore
® tpdk, . dvg-l
i /n KT <, (15)

then (4) is true.

Notice that Theorem 1 applies to the kernel X that is umiform on the
unit sphere. While condition (12) is considerably weaker than Nadaraya's
condition (11) on the sequence {hn}, the generalization of Theorem 1 towards
all radial kernels satisfying Condition 1 (not just the ones taking finitely
many values) is only possible if we also require

nhﬁd/log n+o (16)
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Lemma 2 below deals with a gecmetrical-probability-theoretical inequality
which will be used in the proofs of Theorems 1 and 2.
LEMMA 2. Let s(z,...,%,) be the number of different subsets of {z;,
ces ,xn} that can be obtained through intersections of {x;, Z,s.++s %}
with spheres (under the %y - norm) from &l . Then

t(p,d)

max s(x ,...,xn) < (2n) Qan

(xl,. .o ,xn) € “dn

where
1 + d(p~1) r21l, p even,
tpod) =2% (1 +dp-1), p21, p odd,
2d, p=o.

THEOREM 2. Let the observations be uniformly generalized Gaussian, let condi-
tions 1, 2, (2) and (16) hold, let A be a compact set and let some version
of m be bounded and continuous on supp(). Then (4) is true.

Note. A quick inspection of the proofs reveals that under the conditions of
strong consistency stated in Theorems 1 and 2, we have complete convergence
as well, that is

o
nEIP{essAsuplmn(X)-m(X)i >gl<o for all €>0 .

3. PROOFS

Proof of Lemma 1. Since 7 = m(Xl)""’ Y =mX) a.s., it follows that

ess, sup lmn (x)=-m(x) |

n
< ¢=zssﬁsu1;v7:£1 lm(Xi)—M(m) iK((Xi-x)/hn)fs((Xi-x)/hn)/gn(x) (18)

n
+ essAsupig1 ]M(,Xi) -m(x) !K((Xi-x) /hn) ISC( (Xi—x) /hn) /gn (x),

where n
g,(x) = £§__31K((x—X,£)/hn)
and S is an arbitrary set from Rd. The first term on the right-hand side
of (18) is not greater than
sup  |m(y)-m(z) |

ly-xlisr
red
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if we take for S the closed sphere centered at 0 with radius r/hn .
With e, = sup |m(x)|, we notice that the last term in (18) can be esti-
mated by supp(H)

L*(r/h )nhd r inf g, () , (19)
where I*(u) >0 as u-+>= . For » so small that sup |m(y)-m(z) | <e/2,
we have, I g’:} =r

Pless suplmn(:c) -m(x) | > €} < P{inf gn(x) < ynhd} s (20)
A A n

where vy = 4cmcL/rd€, and er = L’A‘(r/hn) +0. In the remainder of the
proof we show that for sufficiently small y>0 there exist constants kl,
k2 and k3, all positive, such that

-d

Plint g, (@) <vil} s KW ? em(-kpid), if B <k, (21)
A

Lemma 1 will then follow by the Borel-Cantelli lemma.
If W, denotes the empirical measure for Xl’XZ"”’Xn’ then it follows
from Condition 1 that

p{izf g,() <Ynh:zl} S P{izf u, (S(xsu*h ) <YhZ/L(u*)} . (22)

Now, one can find ¥ = N1+N2/hi points  y,,y,,.- Yy in the cube containing
A such that spheres S(yi,u*h n/A) cover A. Since for each ze4, there
exists an 7 with S(yi,u*hn/Z)_C_S(x,u*hn), and since for each y, we can
find a yt in A such that S(yf,u*hn/A) S_S(yi,u*hn/Z), we can write

P{j_zf W (SCuth ) < Yhi/L(u*)}
N d d d
< oIy PO, (Spwth /D) <YR/LGMY < 8 Pl (S(yk,ush, /6)) <YLt }

b (23)
<N s:lxp P{u (5Cx,u*n /4)) ~ u(S(z,u*h /4)) <y;, Lux) - W(S(x,u*h /4))}

<N SZP P{un(S(x,u*hn/a)) - u(S(z,u*hn/4)) <= H(S(x:u*hn/lo))/Z} )

provided that iaf u(S(z,uth /4)) 2 2Yh¥/L(w*). Condition 2 insures that
we can find a small constant Y >0 such that this is true whenever ,}u*h <b.
It suffices to pick Y = L(u*)au* /(2><4 ). For any set D, Bemmett's in-
equality (Bennett, 1962; Hoeffding, 1963) implies that
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P{un(D) -u(D) < -u(D)/2} < exp( -nu(D)/2) Z (2u@)+u(D)/2) = exp( -nu(D)/10).

Thus, (23) can be bounded above by N exp[- n 1}41f u(S(x,u*h n/lo))/10] which by
our choice of Yy is smaller than ¥ exp(—nhd'y/SL(u*)) when h <4b/u*,
Q.E.D.

Proof of Lemma 2. If only intersections with linear halfspaces from &
are considered, then (17) is true with t(p,d) = d in view of a result of
Cover (1965) (see also Vapnik and Chervonenkis, 1971) who showed that

s(a: 2o es®, ) <1+nd for all x € Rd, cea, eRd Now, a sphere under an Qp
norm (p<°°) can be viewed as the set of (yl,...,y )eﬁd w1th Ia ly yolp
< rP, where ayse-.sa; are scaling constants, (yo,...,yo) is the centre
of the sphere and r is the radius. Equivalently, it is the intersection of

all possible 22 sets defined by

a.h,(y —yg)pSrp, ¢ 2)ed-1, Ay,

1,-11, 12°°°7d

(If p is even, just consider the set corresponding to A;=...=A d=1.) This
sum can be regarded as a linear combination of a constant, all d functions
y*, all d functions (y9)?,..., ali d functions 5P, and the
function alxl(yl)p+. - tag) d(yd)p , that is, a linear halfspace in a Buclidean
space with dimension 1+d(p-1). This covers (17) for the case p even. For
p odd, we obtain by an obvious argument t(p,d)-Zd(l+d(p+1)) For p=«, a
sphere is an intersection of 2d cylinder sets, each one of them generated by
an interval on the real line. Hence we deduce: s(xl sZ,) < (1+n) <(2n)
Q.E.D.

LEMMA 3. Assume that Zl”"’zn are independent zero mean random variables
satisfying
sup &{IZilq} Se<w (where q22) . (24)
i

Then
I % g, 22,7 2
P{|n «;Elzizil 2 €} skliélzi/(ne) + 2exp(-kyn'e /?:Elzi) .

where €>0, and BlseeesB, i8 a sequence of nonnegative constants. The
constants k; and k2 only depend upon ¢ and q.
Assume that instead of (24) all zZ; satisfy

8{exp(kzi)}Sexp(-k202/2(1-|)\|c)) , all |A|<le , (25)

for some ©>0, ¢20. Then
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-1 7 2, 27 2
P{|n"" L 2.2.|2¢} 2 2exp(-ne"/2(0” L 3./n + c emax 2,)) .
1:'11,1, 1:311' i 1

Proof. The first inequality follows from a result due to Fuk and Nagaev (1971):

1% 93 &{|2.2.19/(ne)?
P{n"" ¥ 3,2.| 2 e} s 2042/)7 T &{|2,2,(9}/(ne)
i=1 2

n
+ 2 exp(- 27’ A (@)Y £ 8l(2,2)7D) .
i=1
The second inequality is proved as follows. If z = max(zl,...,zn), then
for all A with .lxlzmc<1 we have

2

_qn _ n
P{|n 1y zizil 2¢ls<e Ane exp(czzqz:)\ /2(1-zm|l|c))

1=1 i=1

2, 2% 2
< exp(-ne“/2(c” I zi/n<+ czme))
i=1
. 2 T2
upon taking Acz, = ecz o © iglzi/n +cz €). Lemma 3 follows by symmetry

since the same bound is valid if the Zi are replaced by -Z.. Q.E.D.
Proof of Theorem 1. Since

n
essASup Imn(a:)-m(a:) | < essAsup |i§1(Yi—M(Xi) )K((x-Xi)/hn)/gn(a:) | (26)

+ essAsupligl(m(xi)—m(a:))K((w—Xi)/hn)/gn(x) | ,
it follows from Lemma 1 that we need only take care of the first term on the
right-hand side of (26). Since X can only take k+1 values, X must have
compact support. Let us define these values as a1>a2> "'>ak>ak+1 =0,

and let uw*>0 be any point on the real line with L(u*) >0. Looking at the
vector [K((‘”'Xl)/hn)""’K((‘”"Xn)/hr)] as a function of x, we notice that

it can take at most

(27) @ DK

values. For k=1, this is a consequence of Lemma 2. For k>1, use Lemma
2 and the fact that the set of y in @@ on which k(y) =a, is the inter-
section of at most k-1 sets, each defined by an inequality of the form
K(y)zaj (or, equivalently, by |1l yll Sbj for some bj>0)., This is in con-
trast to the exponential bound k" that one would suspect. If A =A(X1,. . .,Xn)
is the partition induced by the said vector (motice that A can have at most
(2n) tk member sets) and if the value of the vector on the {-th member set
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A; is (agysee-sap)s then we have the following inequality:

n
pless sup| % (Yi—m(Xi))K((z-Xi)/hn)/gn(x) |2 e} (27)
A 1i=1

n
= i‘i{P{essAsuplizl(Yi—m(Xi) )K((x-Xi)/hn)/gn(x) |2e:X ,. ..,Xn}}

S PLWpeensX ) £BY + 8UI(K 0. X ) ess dup  sup (2m) t¥
(Xl,‘ .o 3Xn) AJ-E A(Xl, . ..,Xn) X

om n
x P{| R (‘Yi-m(xi))aji/ b

I I |2 1%,k 1)

a..
Ji
for any set B. Now given X seeesX the random variables Yl-m(Xl) cees
Yn—m(Xn) are independent and have zero mean. For any Aj eA(Xl,... ,Xn)
with corresponding vector (ajl’ . "’ajn) we have by Lemma 3:

n n
P{| E, (¥;-m(X))a ji/nlz (;Lja;:/me 1X;,... X}

2,2 2

kyb nd-1 B + 2 exp(-kznzezbi/nbz) , (28b)

according as the observations are (a) uniformly generalized Gaussian, or (b)

n
uniformly in L  (g22) . Here br = iglagi/n for any r>0, and b_ = max(

Q.qsevesds ). As usual, k ¢ and ¢ are used to denote nonnegative
Jl Jn

1’ kz,
constants. The inequalities can be further reduced to the point where the right-
hand sides are of the forms
2 exp(-k3nb1/bm)
and
Ky Bo/mb )T 4 2 exp(kgnby /b, < kg (b /nb)TY

in which k3’k4’k5’k5 are positive numbers not depending upon » or
(@j1,.- 50, We use bysbhib, and b <bp?™ in (28).
Let us take for B the set of all (xl,...,a:n)eﬁd" such that

d
i;le un(S(x,u*hn)) zyhn s
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where a small constant y>0 is to be picked later on. If (X1,...,%) B
then it is clear that for any AJ.eA(X "“’Xn) we must have

by /b, (VL) /ay)nkL
Consequently, (27) can be bounded above by
; d tk d
P{izf un(S(:c,u*hn))<Yhn} + (21) 72 exp(-k,nk)

or (29)
d tk d\g-1
P{i:f un(S(:c,u*hn))<'yhn} + (2n) k8/ (nhn)

depending on whether the observations are uniformly generalized Gaussian or
uniformly in Lq. Again, k7 and k8 are positive constants not depending
upon 7. Proceeding as in the proof of Lemma 1 we notice that for some kg,

klo,ku>0 and some y>0 sufficiently small,

d: -d d .
P{izf un(S(a:,u*hn)) <yh} Skghn exp(—klonhn) » if K < kyq - (30)
Theorem 1 follows from (26-30) and the Borel-Cantelli lemma. Q.E.D.

Proof of Theorem 2. If K = sup K(x) and {s,} is a sequence of positive
integers with snr‘m, then we define the functions K on &4 by

K, (x) = inflk j/s |K i/, 2K(x), §=0,1,...,8 } .

Using a small modification of the proof of Theorem 1 we see that there exist

constants k1’k2’k3’k42° depending upon € such that

n n
Pless sup|igl(yi-m(Xi))Kn((x-Xi)/hn) | /iglKn((w-Xi)/hn) 2 €} (31)
A
- ts
< klhnd exp(-kznh:zl) +kym) T exp(—kanhz) )

Indeed, K, can take at most 1+s, values. Now (31) follows if we can
show that for s, large enough, the bounds in (29) hold umiformly over all
Kn. If X takes more than 2 values, then one can find w**>u*>0 and s*
such that Kn(x) > L(u**) whenever Il zll <% and s,> s*. As in the previous

proof, this would give us a lower bound on nbl/bw that looks like
d
(YL(u**)/Kmax)nhn .
The same bound is valid for all X with sn>s*. Since the first term in

(29) does not depend upon Kn, (31) follows.
Using (26) and (31) it is easily seen that we need only find an upper
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bound for the following probability:

n 3
P{essAsup 1:§1|Y1:'”’(Xvi) HKn((z-Xi)/hn)-K((z-Xi)/hn) |/g,,(x) z €}

] n n
s{p izfiglK((a:-Xi)/hn) Siﬁlly«;""(xi) |/¢ es )} §(32)

n n
. . -1
< p{i:figlx((z-xi)/hn) <én/es )} + Pln L |Y.-m(X.)| > 6}

/
because

| L FmEDIK (=X ) /R )/1.1" (==X )/m )| - |1_1(y ~m(X))K((z-X,)/h ) /g, ()|

v,=1|1’ X)) | |K ((==X)/h ) -K((2-X ) /R ) | /g, ()

The random variables IYII,IYZI, ...»|¥ | are independent identically
distributed and if m is bounded, they satisfy an inequality as in (25). If
we pick & > Aﬁ{ll’ll} and § > 2essAsup Im(Xl)] then

{n-l s |¥.-m(X.) | > 8} <Pt ; (17.] + [m&x.) ) > 8}
E 1Y, & U i

g " "

< P{n" 3 Y, | > 8/2Y +P{n T |m(X,) |>8/2}) 53
)

n

e =1 . .

< P{n igl(lyil-&{lyi[}) >68/2 - s{lyll 1

n
-1
< Pin igl(lyil-&{lyil}) >8/4} <k, exp(-kn) ,

where ks,kg are positive constants depending upon .
s, as the nearest integer larger than e/hd and let 6 > 0 be chosen

large enough to make &/e6<y. The first term in (32) is then bounded above
as in (21). Collecting bounds, noting that

Let us now pick

d
kq (2n) te/hn exp(~k 4nh;'f)

is summable with respect to n for all k3, t, 0, and invoking the Borel-
Cantelli lemma yields Theorem 2. Q.E.D.

RESUME
Soit (X ’Yl)’ vees (Xn,.Yn) une suite de vecteurs aléatoires
indépendants, identiquement distribués 3

(1964) et Watson (1964) ont proposé
m(x) = &(¥, |x; = x)

valeurs dans adxﬁ, Nadaraya

d'estimer la fonction de régression
par
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n n
me) = EIHE L)/,

ou K est une densité connue et {hn} est une suite de nombres positifs
satisfaisant certaines hypothéses. Dans cet article, on présente plusieurs
ensembles de conditions sous lesquelles essxsup|mn(X)ﬁm(X)| converge forte-
ment vers 0 (X est un vecteur aléatoire, indépendent des données ayant
la méme distribution que Xl). Les théorémes présentés sont vrais quelle que
soit la distribution de X, et pour toutes les suites {hn} satisfaisant

7%+0 etn%?hgn+m.
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