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Abstract ~

A probabilistic automaton with an expanding memory is presented. Its asymptotic
properties as a stochastic optimization technique are studied. The procedure is I
shown to be convergent under very mild conditions on the statistical characteristics
of the random environment.

\

1. PROBLEM FORMULATION :

A finite random environment is a finite collection p = p[x =x } ; 1=1,. .,N ; n=I,2,...
of distribution functions on ~l, say {F1,..,FN}' ff nil

It is assumed that Fl'.' ,FN are unknown. To gather!: P1n = 1 ; n=I,2,... (2)
1=1some knowledge about we can apply a stratenv x. '

-~l

(i£(l,. .,N}) to the environment which responds with

a number Y where Y is a random variable with
distribution function F. in ~1 and mean. where XnE{xl ,.. ,xN} is the strategy that is picked

, 1
.-at epoch n. In general, the selection vector P

nQ(X1) = S y.dF1(Y) = Ex1{Yl ,1=I,..,N. (1) is a random vector. Let Yn be the loss that is

observed after Xn is applied to the environment.
Q(xi) is the expected loss with strategy xi' The expected loss with P is

n
The problem of the sequential selection of the best

Nof the N strategies xi,i=l,..,N has been extensively M = E{Y IP 1 = !: E {Y1.P[X =x IP 1 (3)
dealt with in the literature. One of the most pop- n n n 1=1, xi n 1 n

u1ar methods to tackle this problem was the = ~ P .Q(x) .
stochastic automaton with a variable structure (for 1=1, in 1

a survey, see [1]). To describe the strategy A probabilistic automaton is a set of rules for

selection process, we assume that there exists a computing P +1 given (P.,X.,Y.),j=l,. .,n (seen J J J
discrete probability density on {xl'" ,xN }, say [1-5]). A probabilistic automaton is said to be

Pn=(P1n""PNn) so that optimal if

-
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collection

liffiE(Mn}=inf(Q(xl),..,Q(~)}. (4) e={Fx<.)lxEB} (5)
n

of distribution functions is a randon ~~viron~~

We remark that in general random environments with search domain B if B is a closed set from IRm

(i.e., no restrictions are imposed upon the Fi for some m, and if there exists a Drob~hility

except for the existence of the Q(xi))' only the space (fl,a,p) and a (flxB,aXB~)-(Rl,31) 1
performance directed probabilistic automaton [5] lJIeasurab1e function h such- that for all y(II- :

is known to be optimal. Fx(Y) = ~(w 'w~f2,h(w,x)sy} ,

The problem naturally arises of whether it is N t . th t . f B . t b1 f .o
t th hOlce a 1 lS co un a e or lnl e, en suc

possible to find a probabilistic automaton that is b b 01' t d b1 f t o ha pro all y space an measura e unc 10n can

optimal in countab1y infinite (c.i.) random 1 b f d Th o t k t th ta ways e oun. us 1 ma es sense 0 say a

environments e={F 1,F2"'}' We will show in this 0 d o t o t b1 11 t o a C.l. ran om envlronmen lS a coun a e co ec 10n

paper that if the variances associated with the fd ' t . b t . f t o 1R10 lS rl u 10n unc 10ns on .
F1,F2'" are uniformly bounded and inf {Q(X1)' .0 o. 0 .

Q(x2)"'} > -00, then the answer to this problem is The reason for thlS deflnltlon lS the fo11~w~ng.

affirmative. We will first classify the random Let X be any random vector (on some probabl11ty

environments according to the characteristics of space(.fl',Ci',P') that is different from(S},a,P))

the Fo in e. Thereafter, we describe two proba- taking values in B, then Y=h(w,X) is a random

bi1is~ic automata, P1 and P2, and prove their variable on the product of both probability spaces.

optima1ity as well as some other asymptotica1 We will assume, for all the sequences X1""Xn of

properties. The emphasis is on the new techni- random vectors that are applied to the environment,

ques employed to prove the convergence of the that the corresponding observed losses are

said procedures. independent random variables given that X1=X1'"

2. A GENERAL SETTING ",Xn=xn for all xiERffi,t=l,..,n.we will refer to

The importance of the class of c.i.random environ- Q(x) = J y.dFx(Y) ~ ExfY} (6)

ments is the following. One way to tackle the th t h t ' f . d Q 0 as e stOCnaSt1C performance lnaex. lS

mu1tiroodal stochastic optimization problem in d1 B 1 b1 f t . f B tm assume ya ore measura e unc 10n rom 0

mm (m~l)is to partition R into small compact 1R1 Of t f B k 1 d o
.course excep or , no nowe ge lS

sets (for instance, rectangles) and consider each 01 b1 b t d Q Th b1 .
taval a e a ou tan. e pro em lS 0

rectangle as one strategy to be applied to a c.i. t o 11 f o d 1 ~B f h. h Q , sequen la y ln a va ue x~ or w lC lS

random environment. We can thus reduce the .. 1 1 ., 1 B t th O 0
t1mlnlma or near y mln1ma. u lS lS exac y

optimization problem to the problem of finding th t h t ' t .' t ' b1 Th de stocnaStlc Optlmlzatlon proDlem. e rea er

the best strategy in a c.i. random environment 0
f d t [6] f f th t 1lS re erre 0 or a survey 0 e mas popu ar

provided that the rectangles are small enough. t h t ' t o 0 t o t h 0 Th h 0 s oc as 1C op 1m1za 10n ec n1ques. e c Olce

The c.i. random environments are but a special f t ' 1 t h 0 d d th 0 0
0 a par- 1CU ar ec n1que epen s upon e a pr10rl

case of general random environments which are k 1 d b t d Q ( 0 Q th ? 0 d 1 ?fl- nowe ge a ou tan lS smoo .unlmo a 0

characterized as follows. Let < ,a,P) be a d off t . b1 ? t ) F k d Q1 eren 1a e. e c.. or un nown f'/an ,
probability space and let B be a closed set from d h '

b b1 th t f t1 dm m ran om searc 1S pro aye mos requen y use
IR. LetB B be the a-algebra of all the Borel t .0 t '

th d ( [7] [g] f )1 op 1mlza 10n me 0 see, or surveys,
sets that are contained in B. Let B be the th t t o b h ' f h o h . t d o d o 1 e asymp 0 lC e aV10r 0 W 1C 1S S U 1e 1n

a-algebra of all the Borel sets fromJ{ and let [8] I th O do t t o..0 ffi .n 1S paper an expan lng au oma on lS

h be a measurable mapping from ( xB (ixB ) 0" 01 1 0 ' B presented Whlch genera11zes the f1n1te automaton

to m ,!', ).Notlce that for every x<;R: y=h(w,x) f [5] f . 1 d o t0 or use 1n genera ran om env1ronmen s.

is a random variable on (Q, ,P). We say that a
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WE' aSSUllle thdt there is a random generator 3. DESCRIPTION OF THE AUTOMATON

covering B, i.e. a device for generatillg a In an iterative optimization procedure, one gener-

sequence Xl'" ,Xn'" of iid random vectors taking ates a sequence of random vectors ZO,Zl"'. where

values in B and distributed as X where X has a for all n, Z ~mm+k, i.e. Z =(X ,Z') with X"J'm and
II n n n n

(known or unknown) distribution function G. The Z'~Rk .X is the best estimate of the minimum'n n ~!JDJ~.!!!.~9-~th respect to ~ is (or: basepoint) at ~ (or: ~!:i.Q.~) n.

,
q .~ ess inf Q(X) .(7) We describe two very similar iterative optimization

!111n
For a definition of the essential infimum, see procedures, P1 and P2. let {an},[Bn}'{Yn},{on} and

[10]. Actually, q. is the unique number with {nn} be sequences from [0,1] that are picked by

the property that ~~~ all £ > 0 : P{Q(X)<q .-,,}=O the designer in a special way in order to insure
-m,nand P{Q(X):;q .+;: f'O provided that q .>-"'. We the convergence of the procedures P1 and P2 and to

ren~rk tha; 7}nB", is a countable setm~~l,x2".} obtain the desired rates of convergence. For

and G puts n~ss g. at x, such that procedure P1, let {bn} be a sequence of integers

; g. =1; O:.:g,<l ~ i=l,~,... ,then with l~bn~n for all n. For procedures P2, let. 1 , , -
,= , q .= inf Q(xi)' {kn} be a sequence of integers with l~kn~n for all

1111n i:g,>O n. Then the expanding probabilistic automaton can
1

In this case qmin is independent of G as long as be described as follows.

every xi receives positive probability frnm G. (i) Zo (and thus XO) is either given or selected:

We distinguish between the following types of by the designer. Zo is sometimes referred to as '

random environments: the initial state. Notice that one can always

1£: ..:. (deterministic, noiseless, etc.) if randomly generate Xo with distribution function G

. E -, 2 in ~m.x o is then applied to the envirnnrnent and a
sup xt(~-\)lx.)) 1 =0 (8) .-
x~ J, loss YO is obselved. let HO-(XO,iO,l,O) and let

which is equivalent to sayin~ t.hat for all x in B: {Hn\ (n?-O) be a ;equence of random vectors composed

Y=Q(x) WPl (with probability one). of a growing number of quadruples. H can ben
(ii) E', is f t (t.,O) with parameter l,'" if thought of as the ~ at epoch n. let l bet n

sup Exf IY-Q(x) I 1 the number of quadruples in Hn' say
XE S t ( 9) ---n -n= sup !ly-Q(x)ldfx(y) s L<~, H =(w 'Y

ln,N?,T l )""'(WL 'YL ,NL ,TL)
x'OB nIl n n n n

(ii i) ~ is :,'~xponenti a 1) i f for every ,,"0 there where W i~R 1/1 and where N'i' is the ~2<P~~C~ gai ned

exists a c()'O such that with W.,' up to epoch n,i.e. N~ is the number of
,

sup E {e\(Y-Q(x}) 1 = sup "eA.(y-Q(x)) dF (y) times that Wi was app1 ied to the environment up to
XEB x XES. x (10) epoch n. Ti is the iteration at which Wi was

S Q!' Ie for all A.E[-c(e),+-c(e)). first generated and added to Hn' We say that Ti

is the birth date of W.. vn" is the average of,
If an environment is ,jthen it isXand if it is~; the N~ losses that were observed after Wi was

then it isl:t for all t>O. If {', is tt th"n P is applied to the env.ironment. ~ obviously serves

f'f;for all ~ with O<s<t. Ifeist'.2 with parameter as an estirnate of Q(Wi). We will see that

l=O then" is":' .It should be pointed out that 1=lo':'.ll'~l2;"'. .

most environments of any practical interest are:c. (ii) Proceed to the next it~ration, say the

For instance, if F puts mass 1 on [Q(x)-a,Q(x)+a] n-th. H l and Z 1 are known. X l is the base-
x n- n- n-

for some a<" and for all xEB, then the environment point before the n-th iteration and H 1 ' as we
n-

is~:. A1s~, if all Fare gaussian with a know, contains l 1 quadruples. We generate an
x n-

variance that is not yreater than some a<', thE'n ~ independent random variable U' wheren
.\.', S ..
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Let the selected point be WI where l~In~Ln-l=Ln'
U' = 1 with probability a n

n .n (11) Apply WI to the environment, observe a loss Vn
0 otherwise. n

.and update H 1 in the obvious way. That is, letn- 1un-l n- ) .If U'=O, no new quadruple is generated so that H =H _1 except that (WI ,VI ,NI ,TI 1Sn .1- n n n n n n
Ln=Ln-l' We proceed to (lV). If Un-l, a new replaced by (WI .~ .N~ ,TI ) where

quadruple is generated and tested. We let n n n n

L =L 1+1 and proceed to (iii) for the generation yn = (Y + Nn-l yn-l
)/( 1 + Nn-l )n n- I n I. I I

of this new quadruple. n n n n (14)

(iii) Generate an independent random variable Nn = 1 + Nn-l
I I.

U where n n
n

U = 1 with probability 11
n n (12) (v) Now that we have made one observation at

0 otherwise, '"I 
the n-th 1terat10n and have obta1ned Hn and Ln' we:, 

If U =1 we generate W at random in B using the have to decide which of the points Wl """W L is c n ' L n

random generator with tHe distribution function G. most likely to have the lowest corresponding value

If Un=O, then WL is a random vector taking valuesin Q(W.),i=l,..,L. The new basepoint Xn is picked

B and having an Rrbitrary distribution function in fro~ Wl'" ,WL nin the following way (notice that

Rm. WL may depend in an arbitrary fashion upon it is at thisnpoint that the procedures Pl and P2

Hn-l anH Zn-l. We require that P {WL EB}=l for all are different from each other). With the proce-
nn. dure Pl, we look for all the quadruples in Hn for

WL is then applied to the environment and Vn is which

thg observed loss. We can now obtain Hn as N~ ;?: bn (i=I,. .,LJ .(15)

follows. Let

H =H (W ~ Nn T ) Among these quadruples, pick the one thatI' L' L ' L ' L unn n- n n n n corresponds to the lowest value V. and let the
1

un n ( ) corresponding W. be X. Ties are broken randomly.
where V =V ,N =1 and T =n. Proceed to v. 1 n n

Ln n Ln Ln If there are no quadruples with Ni~bn ,let Xn=Xn-l.

(iv) If no new quadruple is generated then the With procedure P2, we look for all the quadruples

experience with one of the Wi in Hn-l has to be in H for which
increased. We describe first how to pick a member n T s k (i=I,..,L)

W. from H 1.Generate an independent random inn (16)
1 n-

variable Vn where and proceed in a similar fashion. We remark here

V = 1 with probability 6n that the procedures Pl and P2 can be carried out
n 0 with probability Y (13) recursively,i.e.we do not have to check all the

.n ..
-1 with probability 6 =1-6 -Y quadruples in H allover again at every 1terat10n.

n n n. n
The methods for reducing the computational burden

If Vn=l, we pick the basepoint Xn-l from are standard and are left to the reader. Note

Wl'.' 'WL .If Vn=O. a point is picked at random that Pl selects the basepoint among the Wi of Hn

from Wl,~~~WL ,i.e. a uniform distribution is used with a large experience while P2 selects the base-

over the Ln pRints in Hn-l' If Vn=-l, then a point point among the W. of H with the highest "ages". 1 ( .1 nis picked from Wl". ,WL 1n some c ever way 1n (i.e. ,earliest birth dates).

order to achieve some gBal. accelerate the rate of ...
.(vi) We remark that 1t 1S up to the des1gner to

convergence. etc.) but it is not specified how the .

dspecify the random vector Z'. How Z' 1S update
selection. is to be made. , n. n.

or computed from Z l ,H ,etc. 1S left 1n the
n- n

middle. These updating mechanisms can play an

85
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important role in obtaining a high rate of conver- 4. CONVERGENCE OF THE PROCEDURE

gence. In fact, it is in this stage that the vast The random variables that are of interest to us

experience of the designer can payoff. For all have the form f(Z ) where f is a Borel

instance, Z~-l can be used to help generate WLn in measurable mapping fr~mlRm+k to lRl. Let

a promising small subset of B. In any case, the XO,Xl,X2'" be the sequence of basepoints in B

nature of Z~-l and of the updating mechanisms is of and let WO'Wl'W2'" be the sequence of inputs to

no importance whatsoever to establish the conver- the environment. In classical optimization one

gence of the algorithm. is mainly interested in

(vii) (ii-vi) constitute one basic cycle Q ~ Q(X) (17)
(iteration) of the search process, Go back to (ii). n n

while in automata theory, the expected loss at
If the random environment is countably infinite, epoch n is also important:

then the algorithm can be modified because the M ~ E(Y I (n ,Z >)::
identification problem for points in B can be n n n-1 n-1

solved. That is, if U'=l, (and thus WL is some E(Q(\"';II (Hn-1,Zn'-1))n n
random vector taking values in B), then it is = Ctn.E{Q(wI. ) I (Hn-1'Zn-J)1+ (18)

decidable whether WL =Wi for some i with l~i::..Ln-l' (1-0' ).E{QC\yn) l(ri ,2 )1n n I n-l 1'1-1
If this should happen, then of course L =L I n'

n n-
(not: Ln=Ln- l +l) and we can proceed from step ( --1 2 )TI- , ,.. .
(iii) to step (iv) for updating H 1, For thisn-
slightly modified procedure, all the theorems of
this paper remain valid. Another modification for Further we can also define

which the theorems of convergence remain valid
M'=E{YI(H ,Z ,U',U,Y)l(the proofs need minor modification), consists of n n n-1 n-1 n n n

rejecting WL if U'=l and WL =W., some l<i<L 1 ={Q(WL ) if U' = 1
n n n 1 --n- .n n

In case of a rejection, other points are generated Q~) if U' = 0 (19)
(using new and independent U ) until one point is In n

n
found outside Wl'..'W .If the random

Ln-l where Ml,M2'" is the sequence of observed losses
environment is not finite, if the support of G is . f ~ . 1 ' t W ' 11 .

1 v were a no1se ess env1ronmen. e W1 see 1n
infinite and if nn>O then this procedure is bound th 1 th t th f Q t ' feorem a e convergence 0 0 q in 1S 0
to stop in finite time. ...n m

cruc1al 1mportance 1n the study of the convergence

Both modifications are geared to prevent a loss of of M and M'.
n n

information in the sense that, with the modifica- Let avb~Max (a,b) and introduce the condition

tions, we will have for all n and all i,j,with
'- .'- ." sup IQ(x)IsK<=.
1-1,..,L ,J-l,..,L ,1"J, that W."W.. " B 1 (20).,

n n 1 J x~

Let WO',Wl',W2',... be the sequence of inputs to the W 1 d k th t .f Q . L Ie a rea y now a 1 vq ~q. 1n
environment. The reader will have no difficulty, n min m1n r

assuming that the random environment is countably (where r>O ) as n-- (i.e. l~m E{ICJnvqmin-qminlri=O) 1

infinite, finding the description of the infinite ,then Qnvqmin~qminin probability as n-- [10]. If 1

, dimensional discrete probability vector according (20) holds, then the converse is also true. We

to which the W~ are to be generated, both with the further have

original procedure and the modified procedures. M = E{ M' , (H ,Z 1)1 (21)n n n-1 n-
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with probability one. In all the following 11m b /( ~ 0', )1/(t-l) = co
theorems we assume that the condition C1 holds: n n 1=1; (27)

Condition C1 : Let 10,11'.. be generated through 11m bn/log (~ (Y,) = co (28)
the procedure (i-vii) where B~m, is a random n 1=1,1

. t .th h d . B I } { } { } then Q vq .~. in probability as n~.
env1ronmen W1 searc oma1n , lan' Sn ' Yn n m1n m1n

and {~ } are sequences from [0,1], {b } (for P1) Theorem 3 (procedure P2) :Let the conditions C1,
n n

and {k 1 (for P2) are integer sequences such that (25) and (29) hold.
n

l<b <n ,1<k <n for all nand q. >-"'. 1im k = = f
-n- -n- m1n n n (29)

Theorem 1 :
(i) Let the conditions C1 and (22) hold. If the environment is either & (in which case we

can, but need not, let k =n for all n) or e t forlim a = 0 ; lim B = 1 (22) n-
n n n n' some t>l and (30) holds, Q.!:. J{ and (31) holds,

If n n kn -
/lim (r Yi.(I-Cti)/ r a).(ra,)1 (t-IL=

(23) n 1=k+l, i=1 1 i=11i 
Q vq i ...q .in probability as n...= n "

( 30)..n m n mm
, I then lim (n ( n kn-1

M'vq. ...q i inprobabilityasn...=. ,r Y1.I-ai)/ E ai) .(log E a,) =m
n mm m n n 1=k + 1 1'- 1 ' 1 1 in ' -, 1= ,

If in addition (20) holds ,then M'vq .~q 1.in L
( )n m1n m n r 31

as n~ for a11 r>O and Mnvqmin~min in probability then Q vq .~. in probability as n~.
and in L (for all r>O) as n~. n m1n m1n

r The proofs of theorems 2 and 3 ar~ given in the

(ii) Let the conditions C1 and (22) hold. If appendix. Let us briefly discuss some of the

QnVqmin'" qmin WPI as n...m (24) conditions of convergence. Notice that b can be
n

then M vq , ...q .WPI as n...m .considered as the minimum experience required for
n mm mm .. d b .. h..any W. 1n H to be a cand1 ate asepo1nt W1t

~ Theorem ~ is.proved.in th~ APpend~x. Not~ that in proce~ure P~ ; on the other hand, n-kn is the

g~nera1 1t w111 be 1mposs1b1e to 1nsure t at minimum age required for any Wi in Hn to be a

Mnvqmin~min WP1 as n~. Indeed, for the latter candidate basepoint with procedure P2.
type of convergence we need that Lan <'" but this Condition (25) not only insures that,WP1, L 400 but

contradicts the condition Lan='" that is needed, also that with probability one there is an ~nfinite

as we will see, for the convergence of Qnvqmin to sequence of points W. that are generated by the

qmin as n~ in the sense of (23). We will now "random generator" (~hus having distribution

show ~nder which conditions we can insure that function G). Notice that if Ln is large, then all

(23) 1S true. the N~ are smal1,i=1,.. ,Ln and thus the ~ are

relatively noisy estimates of the Q(W.) (how noisy
1

Theorem 2 (procedure P1) :Let the conditions C1, depends of course upon the type of environment ).

(25) and (26) hold. If L is small, then the N~ are large, but at
n 1

= the same time, the probability that any of the
1: rxn.lln = = Q(W.) is close to q. is small because H contains

n-1 (25) 1 m1n n-, n n so few members. Thus there should be a trade-off

lim (r Yi.(I-ai));'(bn. t a,) = co ( ) between the size of H (L roughly increases asn i= 1 1= 1 1 26 n n
If the environ~ent is either G'(in 'which case (26) ~- <Xi as we know) and the minimum experience or

1-1
is replaceable by the condition that b =1 for all age of the candidate basepoints. This is exactly

n
n) ,Q.!:. et (t>l) and (27) holds, Q.!:.J{~nd (28) expressed in the conditions (27) and (28) of

holds, theorem 2. Condition (26) insures that given bn'
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enough pOints are available in Hn for which an averaging process (which nlakes the automaton

N~ ~ bn' Condition" (~O) and (31) in theorem 3 suited for use in stnchastic envi'.~(Jnl;,cnts).

are the counterpart~ of (27) and (28) if one A ~ t .1 " t d . d f h t ' f"e a1 e" s uy 1S ma e 0 t e proper 1es 0
remarks that r .I n convergence of Lhe automaton. AnKJng other th1ngs

,. Y '1-'01) / -i'-:-'; ,1. I j' \ i I i~'1, °i we proved the optiTTlal ity of the Jutomaton in a large

c~n be consideredJas the minimum experience class of random efivironments. To achieve tlii5

associated with any W. in H with birth date optimality, i,t WdS shown, that the rate of increase

T.<k (i.e. points th~t arencandidate basenoints of the size o~ I;he memory and the rate of in~rease

W~~hnprocedure P2). of the accuracy of the information that is stored

in the memory have to satisfy a trade.off condition
It is not hard to 5ee that Pl:P2 if b =1 with Pl

th t ddth . h . t . t . f thn a epen s upon e no1se c arac er1s lCS 0 e

and kn=n with P2. This procedure is easily retog- d ' t Th d t f th t h . ran om enV1ronmen. e a van age 0 e cc n1que

nized as the classical random search algorithm. th t th 1 f 11 bl t h t . f1 S a e c ass 0 a owa e s 'JC as 1 c per orm-

for deterministic environments (see [6],[8]). . d.. 1 d th 1 f 11 B 1ance 1n 1ces 1nc u es e c ass 0 a ore

Let us give an example of sequences {cxn},{Bn}'{Yn}' measurable functions on p,m that are bolAnded from

'n:,{bn} and {kn) satisfying the conditions of below. We did not intend to present a procedure \

theorems 2,3. For any nonnegative number sequences t.hat is quickly convergent. For this, it is

an: and (cn)' we say that an=O(cn) if there exists necessary to use the freedom in the deslgn of the

a K with O-cKr'l' such that an.:.K.cn for all n, Let automaton as well as possible. In partil:,!lar it

for some K2,K4,KS from (0,"-) : seems natural to use the information contained in

"n= K2/na; "¥n s 1/2 for all large n ; Hn-l

~n arbitrary (32) (i) to direct the search process (see stage
, - K b '( -1 g -1 .(iii) of the algorithm), If U =0, use the data in
Q-- ,n; =O(n)'i1 = n

n 4 n I n H 1 to determine prolnising subregions of B, out-
h n-

'J(n);kn Ks,nk sideWl".'WL .Onecanforinstancecorlsider

\'mere ObV10usly a/O b/O k,O g-O h>O, ..n-l.., , --' --, .-, -, -a var1able d1str1but1on for WL that puts all of
It. is a straightforward exercise to show that (25) . t . ht . 11 . hb R d f th . t1 S we1g 1n a ~,ma ne1g or 00 0 ose po1n s

is implied by a+h/l, (26) is implied by acg+b, W 1 . L .th I d. t . t -y~-l -., .:.1.:::. W1 ow correspon 1n') es 1ma es .,

(27 ) is i mplied by b/ ( l-a
)/( t-l ) (28 ) is implied 1.. n-l .1

, (11) to control the sampl1ng process (see stage
by brO, (29) is implied by k/O, (30) follows from ( ' ) f th 1 .th ) If V 1 th d t . 1V 0 e a gor1 m. ~- ,use e a a 1n

')/a -(l-a)k/(t-l) and k /n/2 for all n large
H to determ' h. h W fn

H dn n-l 1ne w 1C i 0 n-l nee more
enough, and (31) follows from g"a and kn <n/2 sa pl1 ' n To d th1. b .d d b thm g. 0 s we can e gU1 eye same

for all n large enough. sampling techniques that are in use for finite

7. CONCLUSION probabilistic ilutomata in finite random environ-

,,\ probabilistic automaton with an expanding memory ments !see,e.fl. [5]).

is presented. The important feature of the pro- The heuristics used in (i) and (ii) are of the

oiJbili',tic automaton is that all the past observa- utmost importance to obtain high rates of conver-

tions are u~ed which "~~es the technique informa- gence. One of the reasons we arc particularly

"-. ti!JfI intensive. Th~ automaton is constructed in interested in high rates of convergenc:e is an econo-

',!j'.h a way that the $ize of the memory is contin- mical one. Givt'n d r:ertain stnpping rule, it is

IJ'~'J',.1y 'jrowinfj (whir:h enables the automaton to hoped that Q ic; close to q. at the stopping time
n m1n

",.t. a', a search pror:f!dure) anrj that the -iccurac:y and that, at the sal,lr' time, the size of H is not
n

'if thf! infonlJation t.hat i'; '-,tored in the memorj excessively lar'Je (bf!cause of the limitiltions for

j., r.r)rlf.inur)!j',l/ improvinq wit.h ti~ by virtlJc of thc active rnemory in t.lle computer). ,

fiR 1



~

We remark that in general random environments, our Lemma 2: Let {a },{c} and {d } be nonnegativen n n
technique is competitive with random search which number sequences such that {d } is bounded. Then

n
requires only a fixed finite amount of memory ~ 11

.~ D '"~ Q) and lim d .~ c :: ~
from the computer. Thus, the expand1ng automaton 11,,-,1, 11 n n ic:l i

.'
should be used when the effort of stor1ng all the if and only if there exists a sequence {k } of
past information can payoff, i.e. when the cost integers with l<k <n for all nand n

of making observations is relatively high or when k -n-
n n

Q is very "abnormal" or when the environment is lim E a.:: ~ and lim d .E Ci == 00.

extremely "noisy". n 1==1,1 n ni==kn+l,

8. APPENDIX PJ:.QQf.: (if part) By hypothesis,

n n
LeRma 1: Let Yl ""'Y be a sequence of d ~ C ... d ~ C a " nn '~i"~ ,"'~""'~
independent random variables with And n 1==1, k n i==k +1,J.

Yi = 1 with probability <Xi ~ a, ~ En a. ..n~ as n...~ .

0 otherwise (i=l,...,n) 1==1,1 i::l,l

where <Xi [0,1]. Then, (only if part) We need only find a sequence {k }

n
n n n I 10 J of integers with k +00 as n+oo and

, P { E y, sEa, 1 s eXP {- E ai n
1 1 , 1 1 ' I n1=, 1=, 1== ,

d .L C, ...~ as r m
and n n n 1==k + 1, 1

P {I E (Yi-ai) I :?; (1/2) E ai J because m n ,

i=I, i==1 ~ a = ~ and 11m k ,; m, ~ n n
n n==I, n

s 2 exp{- E ai 1101 .imply that k
, I n
1= , lim E a, :: ~.

f!:QQf: Let n i= I, 1

26 -1 n 2 Now, if ~ , then n
a = n .>:E{(Y,-E{Y.l) J = E Cn <~ d .L C m as n...co1 1 I n 1i=I, n= , i==I,

-1 n -1 n implies that lim dn==~ , but
n .~ 0'. (I-a,) ~ n .L 0'1' .n£, 1 1 .

i== 1 1= I,, this contradicts the hypothesis that {d }is
n

From Bennett's inequality (e.g., see equation 43 bounded. So we can assume that ~ c = ~.
of [13] and use the inequality 10g(1+u)~2u/(2+u) n=l, n

for u>O ) we know that for every £>0: Let kn be the largest integer such that

-1 n 2 2
P{n .E (Yi-ai) :?;£ 1 s exp{-n£ 1(20' +£)J n n

12i= 1, E ci > t ci .
-1 n 2 2 i==k + I, 1= I,

P{n .t (Yi-ai) s-e1 s exp{-ne 1(20' +£)1 .n

i=I'n n It is clear that k is monotonically nondecreasing
.2 -1 n

W1th o<n "~ 1 <X1.and£=(1/2n).1;_ 1 <X l.,we andthatifkL-- 00 asn+oo thenk+K,,»
a nd-1-, 1- , nrr, n ' ,

obtain the bounds in fact, k =K for all n large enough. Because k
n n

-1 n (1/2 ) n 1 { -n a l ID l is largest, we have for all n large enough:
P { n .t Y i s n .t ai s exp t 1

i== I, i== I, i= 1 , n n
and n n n t Ci s t ci/2
P { n-I tY :?; (3/2n). t a, 1 s exp { -t a,II0 J th t i==K+2, i=I,

.ii, 1 so a
i== I, i= 1 , 1== I, n K+ 1

~ ci s t ci
i=K+2, i=l,

from which lemma 1 follows trivially. QED
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for all n large enough, But this would imply that -,../c
c~ };-I ) 11m II ,tJ n := 0 for ul.1 :1->0
\' C c;~, \~ C <" 11l, n ,- n !I

II'" ) I 11-" 1 I
which is a contradiction with co , which, on its turn, is equivalent to the condition:

" (' '" '"
lim krl~ to n::1, n Jim cn1ng"ln= ()

Therefore, nand 11
)) II

P , ( ." ' f " t) L t br+1 - / Th(i/ ? ) " C .1'"iJ3 n.I,-' , roof, 1,1 par e n -a n cn ,end " c'" ( .., , .1 ..'.)
Iji~!~-Il II v-I, bc~a/br=a1-r/(1"+1) r/(r'I-1)-

n QED n n n n n ,cn -

d d t . b ( r) l./(r+ 1) .-
Lemma 3: If {c} an { } are nonnega lve num er a c ...0 as n-+=,

n n n n
sequences with 1im c = ~ , then r r

n n (i,"on1y if"part) Trivially, ancn = (an/bn)'

11m C ,e-).,<Irl", 0 fora!! ).>0 (bnCn)r -~ 0 as n"'~,
11 n (ii,"if"part) We remark that c log a ...0 as n"'~

n n
if and only if if and only if a e-)./cn-+O

.II11m d /10-;J C ~ 0)
n n as n"'~ for all A>O by 1envna 3, Choose

n

.1/2'. b = log a / (c log a )

~02i: (If part) Assume, wlthout loss of n .n n n

generality that c > 1 for all n, Given A> 0 find and note that b c =(c 10ga )1/2 and
.n ) nn n nan lnteger N such that for all n>_N: dn>(2/A ,log cn'

Then b /loga =(c log a )-1/2. The theorem follows if

2 n n n n-).,dn .-log CII - / 0 -AbC11'" :; cn,e --1 cn -+ as nolO), we note that, by lemma 3, ane n...O as n"'~ for

(Q!!ly if part) Assume, without loss of generality, all A>O in view of b /loga ...~ and a
n "'~ as n-..oo,

n nthat c > 1 for all n. Suppose that d /log c 1+ ~
n n n (ii,"on1y if"part) Trivially, employing lemma 3

as n"'~, Then there exists a constant M<~ and again,

a subsequence {nO} such that dn'/10g cn'~ M for all c 10gu == (b C )/(b /loga ) ..0 as n.l= ,
1 Th n 11 n n n nn, us,

QED ,-dn,/M ,-lc.g cn' -c ,0 ~ C "r. -1
:I' n Lemma 5: Let t>l,O~C<~, and 1etUt,C be the

for all n', Therefore, cn,e-dn/M does not converge class of random variables Y with E{Y} = 0 and

to 0 as n"'~, contradicting the hypothesis. QED sup E{!YI t} ~ C, Let Y1'Y2'" 'Yn be iid random

Lemma 4: Let {a } ,{b} and {c } be nonnegative YEGt,C
---n n n
number sequences, variables that are distributed as Y. Then for

(i) If r>O, then each E>O there exists a constant K depending upon

lilll an/b~ ,: 0 arId 1im bncn '" 0 E, t and C such that
t1 r. = k

for some sequence {b} if and only if sup P{ U {1,;-l, ~~ Y1 I ~E: J J ~-; K/nt-~ (42)
n r Y" r.- k -- n 1--1I.im a C ~,O, -'I.k t C' -, -,

1111 I-
(ii) Let 1im a = ~,Then rI

n'-- n Let J be the class of random variables Y with E{Y}

Iii:' n C-:l-b)1 '" 0 for lIII ). >(1 (1]lci 1.1111 h C :0- 0 = 0 and with the property that for every \5 > 0
11 1111

!1 )] there exists a C(l~) > 0 with

for some sequence {bn} if and only if sup E{e:l-Y1 ~ 01>-/6

YEJ
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which tends to 0 as n+oo in view of (22) and (23).
,all A e [-c(6),+c(6)]. (43) If (20) holds, then IM~12Kl"'" for all n so that

Then for each £>0 there exist numbersB>O and M'vq .+ q. in L for all r>O. Also, under
, n m1n m1n rI M>O (both depending upon £ and the funct10n c) (20), M vq .+q. in L for all r>O if and only

such that n m1n m1n r
[ m -1 k -Bn if M vq .>q. in probability as n+oo, But

sup P U {Ik .}: y .I~ c} } ~ M.c' n m1n m1n

YrJ k"=n, 1="1,1 .(44) note that E{M } = E{M'} so that the "in probability"

n n

part of theorem 1 is proved, For the second part
~:(42) is obtained by inspecting the proof of of the theorem, we remark that

~[11 ,theorem 1], To show (44), let £>0 be p{ U {M >q .+ t}} ~

arbitrary, We will extend the proof of a theorem k=n, k ffiln ~

of [12]. In particular, we show that (44) holds P{ U {Ct
k + I-S, > t/2K l } )-B Kwith B= c(£/2),£/2 and M=2/(1-e ), Let Y be k=n,

~a random variable from J and note that by + P[ U {Q(>: »q. -I-t/'2}}

.k-1 ffilnChebyshev's inequal1ty and by (43), k"-n,
-1 k I ~

Pfll~ .}: Y1r~c} ~e- Alck. =p[ U [Q(Xk-l»q ,+t/2))
1=1, k=n, .mln

(E{eAY})k+(E[e-AY})k) for all n large enough in view of (22), Thus, if

~2c-IAlck.'eIA !kC/2 for all A~[-c(t/2),+c(t/2)] Qnvqmin+qmin WPl as n+oo, then

... 2 -k.c(c/2),c/2 b h . f ' Mvq .+q.. WPl asn+oo, QED~ e y C Olce 0 f. n m1 n m1 n

-Bk /I= 20 .Proof of theorem 2: Let aO=l and note that the
~ -1 k n

Further, P{ U {Ik .I: Y1! ~ t) } ~ sequence {l/bn' ~ ai} is bounded. From (25),
k=n, 1=1, 1=0,

; P{ r~-I. ~ Y.! ~t J .(26) and lemma 2 find a sequence {kn} of integers

k=n, i=I,l with k
n co 2 -Bk / -B -Bn -Bn 11m k =~ : 11m E Cl.T!.. ='~;~ r 0 ~ (2 (I-e», 0 = M. e n n n 1= I, 1 1

k=n,
Q ED

n nProof of theorem 1: Let £>0 be arbitrary. Tnen, lim (J/b .1:; a.). ~ Y1,(I-a1)=c

if x } denotes the indicator function of {.}, n n 1=0,1 i,-,k +1,
{, ..n

P[M~>qm1n+e I (Hn-l,Zn-l)1 = Let £>0 be arbitrary and define the following

Q' .P[Q(W
L »q .+t/(H I ,Z 1)1 events: n nn mln n- n- A =

{ I L -}:; Ct. I ~ '" a / 2 )
n nl n 1 £, 1

1= 0, 1,-, 0,+ (I-a- ),P[Q(Wr »qm1n+e I(Hn-l,Zn-l)} k ~n
n ~

{ I T .-11 1--' v /2 1 n " 2~' 1.0,.-""'."""
1 .J fI .I. 1 0 1 . 0L n =', 1=,

~an+ 1-~n+~n'X{Q(Xn-l»qmin+t1 A = nkn [r.Jn~ b}
n3 i'"" 1 , 1 n

Lkd An1= U n fQ("\'.)~q .+c/2}an 1=1, 1 fr:1n

P{M'>q .-Ie} ~ a- + 1-~n+ L
n ffi1n n

} A 5 = nn {{{ ly.n_Q(\V.) 1< !:/1} n[l':.n~
p {Q (X ) > q .-I e n 1= 1 1 1 1

n-l m1n , n

bn } } 'J {N 1 < bn ) )
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AnD". {Q(XII)~ql;lil1+ c} Further,

Not1n~ tl13t A1, 1\21~:\ .,nA 4r'A ,,~A 0 ' c { Ln {/ -n I11 II 11,'1 n n.J n P{A M
} ~ p U { y, -Q(w,) ~

n1 nS 1 1\V':' hav(' : 1=1,

nI' {A C 1~ r{A "} ~ P{l\ C 1 f- c/4}n{J-J,n:':b }};1.. :0(4/2). ~ "
j }110 n1 n2 1 n n 1",0,

n ~-
c ,c } { ~~ C, =- (3/2). ~ c/, ,sup P{u {IY

( l ) -Q(x) l~c/4}}P{An1:-An2r-"'n3}-I P~An4 +P Anl"'n5 1=0,1 xeB 1=b~, x,

(45 where Y(x,l) is the average of 1 iid random
) variables all having distribution function F in

c 1 xwhere (,) denotes the complement of a set, R (and mean Q(x),obviously), By lemma 5, we can

B 1 1 upper bound the last term byy emma,
nc n

( (3/2). ~ C/ .g(e,£,b) (49)
l'{/. ) ~ 2 (.)xpr-r ~,/It)} 46)

I - D In n1' '1 -,
i=O .k ' where

9 (e , £ ,bn) ,-

I'{J\~} ~;: 0>:;) i- }.:n "1/10} (47) 0 :f~ 1s ~

1=0, K /b t 1 1f e 1s e
t for some

2 n
If X denotes a random vector with the t>1 (K2>0 depends upon e and £)

distribution function G in Rm, then we know that K3e-K4bn 1f e 1s)t where K3>0 and

P{Q(X)~qmin+e:/2} = E; > 0, Then, using lemma 1 ..,

again: J, K4>0 arc con~t~ll ,5 depellq1n~ l!pOn e and c.

pfACi ~l'{ I;~:n {Q(\V»C!,,"'e/~~)}..11'; o. 1 1111.1
)'.], We also have that I: nk C ,II ,klJ .,.,n" 'l' P{A Mn2M113} :0;(3/2). >:; (Vi .P{1+'i-

",P { ..y rI)"'" Cl1,,"J n11= 0 1 ,-"-1 1., ,.. "T"- ( -, 1 , t"t '" -,- ' 1 nv' 1 , ill"',
k kn n

-I-!' {'" , ~ }~ Cr, il /2 ; x <b. n
b,]/{Ui,-'U1=-]} i"'1 1 'i {Ui=V

1=OJ n' L ~(3/2). ~ 0 }" n = l'

( 50)1 0, 1..y'11, r 'r-(\ " ). q ~ /2 OJ'" r, I' , LJ .'> ,"T e .I, ".., i 1I11n
i= I,

_. } }} } Note that E{X{U '=V =O} IL,'- l } = Y,.(l-a,.)/L"-lrl! "I}U{U ,-.()'0 '0~ T T
1

I -i with probability one, As we pointed out, we have

'n
~ c:-:p{ 0- :'. ",':1i/l()} .f- (P(Q(X);- for all n large enough:

i- 1,1 n n

kn b < (2,/30).!: Yi(l-t'j) / ~ Qi
'" C" '1" /2 n 1=k + 1, 1= 0 ,I. 'i 1 11

0 I:: I,
'- \1" ,"'1:/2,1\ Therefore, (50) is for all n large enouqh UDDer

,.;11- k n

r bounded by (3/2) n
P { \' ('II ., ->: 'Vi .,- X{U".V"oO)

~~~'-';':i,{!:j:1(l,/10;f/~).~2 "j'i.l 1=-0, II j"::n-tl, 1 1 '
i:,I, -E(X

{l -'o. \ t. Ol lL1 1 '"'(3,/21- >: {)':'
J J(48) i j , 1,~O,

92



,

i n
f n and

< -(1/2),( r Yj(I-CYi))/((3./2)}:"i) I Ln:; n n

1=1;.+1, 1='0, lim bn,(E CY1)/(r y.(I-Ci.))""O.
( 53

)n n 1=0, 1=k + 1 1 1
n n 'i 

(3/2),~; cx. ). 0 1
1c' ,

kn n Let £>0 be arbitrary and define AnO,Anl,An2,An3
~ (3/2) L Q:1'~xP {- r and A 4 as in the proof of theorem 2. Let

1~0, 1=k + 1, n
n further

n Lkn -n
Y (I-a.) 1«30/2), L 0'1)) An6= n (/Y1 -Q(W 1) 1< 1:/4)

( 4)1). 1=0, 1= 1, 5

kn -b and note that AnlnAn2nAn3nA~4nAn6!;;Ano .
~ I) a e n~ (3 2 E i' .

1= 0, Therefore,

c c c ( c
(51) I' {Ano} ~P (AnI }+P(An21+P AnI ni\n2n1"n3}1-

P(A C} tP(i\ nA r/'. C 1
We remark that for all the environments considered 114 n2 n3 n6 .(55)

in theorem 2, lim P {A A c} = O. Further, (25)
n nl n5 We recall from the proof of theorem 2 thatI

impl ies that P{A C
l } +P{A 2c}+P{A 4c } + 0 as n + ~ k

n n n c c n
P(A 1) + P(A 2J ~ 4exp (-r Ci./l0} (56)

in view of (46-48). Finally, by (51), for all n n n 1=0,1

large enough,

c kn-b
PfAnlMn2Mn3} s (3/2). r OI..e n -+ 0 c kn

1=0,1 P(An4) ~2expf-!v11n(I/10;g/2).E 0I1T1iJ (57)
as n...", 1=1,

in view of kn ~ nand (28) (where we use the fact and, in view of (53), for all n large enough,

that (27) implies (28)) for environments that are
k1\ or Et for some t>l, Thus, for these environ- PfA f).l\ nA c J ~ (3/2). En 01. ,e-bn (58)

nl n2 n3 .0 1ments, lim P{A CO} = 0 for all £>0 in view of 1= ,
n(45) Ifn th .

t .~ t . th t Next, using an argument as in theorem 2,.e enV1rOnlien 1S.,., no 1ce a k

P{An~} 5- P{An~} 5- 2 exp {- Min (1/10; E;/2), P{An2()Aro:3Mn~ J ~ (3/2) '1::.C(i '

.~n (l.Il.} + 0 as n+oo in view of (25-26). ~UE~ Pf
l~b fIY(x,l)-Q(X) t~I:/4} J. 1 1 1 ,1= n' .

However, with b =1 and k =n, the condition (26) 1 ( kn CX) ( b) n n «32),\" ..ge,I:,-.~
is not needed. QED ~ 1=0,1 n (59)

Proof of theorem 3: Consider first environments (3KZ/2). (~n Of.)/b- t-l

that areEt for some t>l. By lemma 4 and (30), 1=0, 1 11

f . d {b } f . t .th where g(.,. ,.) is defined in (49) and K2 is a we can 1n a sequence 0 1n egers W1
b >1, n positive constant depending upon Eand £. It is
n- not hard to see that 1 im P{A

DC} = 0 in view ofk .nn t-l n
lim (E Of1)!bn = 0 (52) (55), (56-59),(29),(25) and (52) (where we use the
n 1=1, fact that (52) implies that the right-hand side of

(58) tends to 0 as n+oo).

93 ;

j



If e is deterministic, then P{A ~} ~ P{A ~}, 7. L.O. Cockrell, K.S. Fu: "On search techniques
n n in adaptive systems.", Purdue Univ.,

which can be bounded as in (57). Clearly, Lafayette, Ind., Techn. Rept. TR-EE-70-01,
1970.

lim P{A ~} = 0 in view of (25) and (29).
n n 8. L.P. Oevroye: "On the convergence of

, , , statistical search.", IEEE Transactions onIf e 1S )(, then, by lemma 4 and (31), 1t 1S Syst., Man and Cybernetics, Vol. SMC-6, No.1,
possible to find a sequence {bn} of integers with pp.46-56, 1976. .

bn?:.l, (53) and 9. R.A, Jarvis: "Optimization strategies in
adaptive control: a selective survey.", IEEE

k Transactions on Syst., Man and Cybernetics,
11m ().:1'1 O'i).c-Abn = o fora)l ~.>O. (60) Vol. SMC-5, No.1, pp. 83-94, 1975.
n 1'--=1, 10. M. Loeve: "P~oba~ilit~ ~heor:~'"' 3d ed., Van

All the terms on the right hand side of (55) are Nostrand, Pr1nceton, N.J., 1968.

bounded as for e t type environments (see (56-58)) 11. T.J. Wagner: "On the rate of convergence for
' th th t . th t f t t K o the law of large numbers.", Ann.Math.Stat.,W1 e excep 10n a or some cons an s 3> Vol. 40, No.6, pp. 2195-2197, 1969.

and K4>0 (depending upon'e~and E): " '

..k -K b 12. L. Baum, M. Katz, R.R. Read: Exponent1al
C } ., n 4 n convergence rates for the law of large

P{AnZMn3r"\6 .s (3K3/2).(r Q'i).e. numbers.", Trans.Amer.Math.Soc., Vol. 102,

1",0, (61) pp. 187-199, 1962.

Again, it is not hard to see that lim P{An~} = 0 13. O.K. Fuk, S.V. Nagaev: "Probability
n inequalities for sums of independent random

in view of (55-58), (60) and (61). Theorem 3 variables.", Theory of Probab. and its
then follows from the arbitrariness of E. Q E 0 ~~~~~cations, Vol. 16, No.4, pp. 643-660,
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