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Abstract

A probabilistic automaton with an expanding memory is presented. Its asymptotic ;
properties as a stochastic optimization technique are studied. The procedure is

shown to be convergent under very mild conditions on the statistical characteristics
of the random environment.

1. PROBLEM FORMULATION : |

A finite random environment is1a finite collection P = P{X’=x1} +4=1,..,N : n=1,2,..,

of distribution functions on R, say {F1""FN}' ﬁn: n

It is assumed that F]""FN are unknown. To gather z Pin =1 :n=1,2,... (2)
some knowledge about we can apply a strategy X;

(i€(1,..,N}) to the environment which responds with

a number Y where Y is a random variable with

distribution function Fi in RT and mean. where xne{XI"”XN} 1s the strategy that is picked

. : at epoch n. In general, the selection vector Pn
Qx)) = [ yv.dF(y) = E (Y} J=l....N. (1) is a random vector. Let Y be the loss that is
! observed after Xn is applied to the environment.
The expected loss with Pn is

Q(xi) is the expected loss with strategy X

The problem of the sequential selection of the best

N
of the ” strategies.xi,i=1,..,N has been extensively h4n= E{Yn'Pnl =5 Ex (Y}.P{Xn=xilpn1 (3)
dealt with in the literature. One of the most pop- =1, "1
ular methods to tackle this problem was the = I; P1n°Q(x1)
stochastic automaton with a variable structure (for i=1, .
a survey, see [1]). To describe the strategy A probabilistic automaton is a set of rules for
selection process, we assume that there exists a computing Pn+1 given (Pj,Xj,Yj),j=1,..,n (see
discrete probability density on {xJ,..,xN }, say [1-5]). A probabilistic automaton is said to be
Pn=(P1n""PNn) so that optimal if

* The research was partially supported by Air Force Grant No. 72-2371.
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1r11m E{M_} = inf (Q(x))....Q0x},  (4)

We remark that in general random environments
(i.e., no restrictions are imposed upon the Fi
except for the existence of the Q(xi)), only the
performance directed probabilistic automaton [5]
is known to be optimal.

The problem naturally arises of whether it is
possible to find a probabilistic automaton that is
optimal in countably infinite (c.i.) random
environments g={F],F2,..}. We will show in this
paper that if the variances associated with the
F]’FZ"' are uniformly bounded and inf {Q(x]),
Q(xz),..} > -o, then the answer to this problem is
affirmative. We will first classify the random
environments according to the characteristics of
the Fi in ¢ . Thereafter, we describe two proba-
bilistic automata, P1 and P2, and prove their
optimality as well as some other asymptotical
properties. The emphasis is on the new techni-
ques employed to prove the convergence of the

said procedures.
2. A GENERAL SETTING

The importance of the class of c¢.i.random environ-
ments is the following. One way to tackle the
multimodal stochastic optimization problem in

R™ (m=1)4s to partition R™ into small compact
sets (for instance, rectangles) and consider each
rectangle as one strategy to be applied to a c.i.
random environment. We can thus reduce the
optimization problem to the problem of finding
the best strategy in a c.i. random environment
provided that the rectangles are small enough.
The c.i. random environments are but a special
case of general random environments which are
characterized as follows. Let (/.G .P)be a
probability space and let B be a closed set from
RrRM Let(ig be the c-algebra of all the Borel
Let 8] be the

and let
h be a measurable mapping from (ﬂxB,Gxﬁg)
tO(H’\l,ﬁl).Notice that for every x¢R: y=h(,,x)
We say that a

sets that are contained in B.
o-algebra of all the Borel sets frmnR]

is a random variable on (&, ,P).
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collection
e = {rx(.)[ xeB) (5)

of distribution functions is a_randon environment
with search domain B if B is a closed set from R"

for some m, and if there exists a probahility
m 1 1

space (f2,G.P)and a (IxB,Gx8 B)-(R 3)

measurable function h such that for all y¢R

F ) =Pwlwelhlw.x)sy],

Notice that if B is countable or finite, then such
a probability space and measurable function h can
always be found. Thus it makes sense to say that
a c.i. random environment is a countable collection

of distribution functions on R].

The reason for this definition is the following.
Let X be any random vector (on some probability
space (', G',P') that is different from(),G,P))
taking values in B, then Y=h{w,X) is a random
variable on the product of both probability spaces.

We will assume, for all the sequences X]""Xn of
random vectors that are applied to the environment,
that the corresponding observed losses are
independent random variables given that X1=X],..
..,Xn=xn for all xiglzm,i=1,. ..n.We will refer to

Q) = [ y.aE () < E_[¥) (6)

as the stochastic performance index. Q is

assumedly a Borel measurable function from B to
R]. 0f course except for B, no knowledge is
available about eand Q.
sequentially find a value xéB for which Q is

minimal or nearly minimal. But this is exactly

the stochastic optimization problem.

The problem is to

The reader

is referred to [6] for a survey of the most popular
stochastic optimization techniques. The choice
of a particular technique depends upon the a priori
knowledge about gand Q (is Q smooth ? unimodal ?
differentiable ? etc.).
random search is probably the most frequently used
optimization method (see {7],[9] for surveys),

the asymptotic behavior of which is studied in
[8]. In this paper an expanding automaton is
presented which generalizes the finite automaton

For unknown g and Q,

of [5] for use in general random environments.




We assume that there is a random generator
covering B, i.e. a device for generating a
sequence X],...Xn... of iid random vectors taking

values in B and distributed as X where X has a

(known or unknown) distribution function G. The
minimum of Q with respect to G is
\
| = f X
Qin = ©8S inf Q(X) , (7

For a definition of the essential infimum, see
[10]. Actually, Iin is the unique number with
the property that for all ¢« > 0 : P{Q(X):gmin-s}=0
and P{Q(X)gqmin+s}\0 provided that Gin” We
remark that if B is a countable set (X]9X55.-}
End G puts mass 9 at X such that

-

v g, =13 0-g.<1 ; i=1,2,... ,then
i=1 1 1- .
° q... = lnf Q(xl) .
ooomin i'g!.)o

min
every X, receives positive probability from G.

In this case g is independent of G as long as

We distinguish between the following types of
random environments:

(i) ¢ is £ (deterministic, noiseless, etc.) if

s v 2
sup Ex1 (Y-Q(x)) 1=0 (8)
Xe B

which is equivalent to saying that for all x in B:
¥=Q(x) WP1 (with probability one).
(ii) £ is at(t>0) with parameter L.~ if

sup E _1Y-Q(x) |y
xeB R t (9)
= sup "|y-Q®) |dr_(y) £ L < =,
xR u X

(iii) ¢ 1is ;{éxponential) if for every ¢>0 there
exists a c(.)>0 such that

WQE) s My-Q )

sup E_{e ) dF_(y)
XeB X XEB X (]0)
< u" e for all xel-c(e),+c(e)],

If an environment is . then it is¥and if it is ¥
then it isi;t for all t>0. If g is €, then e g
Eﬁsfor all s with O<s<t. Ifgpise 2 with parameter
L=0 then It should be pointed out that

fis s .

_most environments of any practical interest are y.

For instance, if Fx puts mass 1 on [Q{x)-a,Q(x)+a]
for some a<~ and for all xeB, then the environment
is¥ . Also, if all Fx are gaussian with a

variance that is not yreater than some a<., then g

is % .
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3. DESCRIPTION OF THE AUTOMATON
In an iterative optimization procedure, one gener-
ates a sequence of random vectors 20’11"" where
for all n, ZR™, i.e. 2 =(X ,2!) with X€F" and
ZéGRk - X is the best estimate of the minimum °
(or: basepoint) at epoch (or: iteration) n.

We describe two very similar iterative optimization
procedures, P1 and P2. Let {an},[en},{yn},{dn} and
{nn} be sequences from [0,1] that are picked by

the designer in a special way in order to insure
the convergence of the procedures P1 and P2 and to
obtain the desired rates of convergence. For
procedure P1, let {bn} be a sequence of integers
with 15pn5n for all n. For procedures P2, let
{kn} be a sequence of integers with 15kn5n for all
n. Then the expanding probabilistic automaton can
be described as follows.

(i) Z, (and thus X
by the designer. Z
the initial state.

0) is either given or selected
0 is sometimes referred to as
Notice that one can always
randomly generate XO with distribution function G
in Rm.XO is then applied to the environment and a
loss Y0 is observed. Let H0=(X0,Y0,1,0) and et

{Hn} (n>0) be a sequence of random vectors composed

of a growing number of quadruples. Hn can be
thought of as the memory at epoch n. Let Ln be
the number of quadruples in Hn’ say

-n —n Tn T n
H=W_Y N ,T),....(0W Y~ N T )
n 1717100 L, L, Ly L
where W.eR" and where N\ is the experience gained

with wi Op to epoch n,i.e. N? is the number of

times that wi was applied to the environment up to
epoch n. Ti is the iteration at which Ni was
first generated and added to Hn‘ We say that Ti
is the birth date of wi. V? is the average of

the N? losses that were observed after wi was

applied to the environment. 7? obviously serves
as an estimate of Q(wi)' We will see that
1=L05L]1L21... .

(i1) Proceed to the next iteration, say the
n-th. Hn- n-1 is the base-
point before the n-th iteration and Hn-] , A5 wWe

1 and Zn-] are known. X

know, contains Ln-l quadruples. We generate an
independent random variable Uﬁ where




t =
Un 1 with probability arn

0 otherwise , an

If UA=0, no new quadruple is generated so that
Lot If Up=1, a new
quadruple is generated and tested. We let
Ln=Ln_]+1 and proceed to (iii) for the generation
of this new quadruple.

(iii)
Un where

U =
n

We proceed to (iv).

Generate an independent random variable

with probability 'ﬂn (
12)

1

0 otherwise
If Un=1, we generate WL at random in B using the
random generator with the distribution function G.
If Un=0, then wL
B and having an Qrbitrary distribution function in
RrR™, wL may depend in an arbitrary fashion upon

We require that P {wL €B}=1 for all

H and 7 .
n-1 n-1 n

n.
wL is then applied to the environment and Yn is
th® observed Toss.
follows. Let
— —‘n
Hn Hn—l'(WLn’?Ll Np T

L "L,
n n n

We can now obtain Hn as

i _ n_ =
where YLn—Yn ,NLn 1 and TLn n. Proceed to (v).
(iv) If no new quadruple is generated then the

experience with one of the wi in Hn_] has to be
increased. We describe first how to pick a member
Wy from Hoote Generate an independent random
variable Vn where

V= 1 with probability Bn

n 0 with probability Yn (13)

-1 with probability § =1-8 -y
n n n

If Vn=1, we pick the basepoint Xn_] from

w],..,wL . If Vn=0, a point is picked at random
from N],?TINL ,i.e. a uniform distribution is used
over the Ln pBints in Hn—]‘ If Vn=-], then a point
is picked from w1,..,wL in some clever way (in
order to achieve some 9851, accelerate the rate of
convergence, etc.) but if is not specified how the

selection.is to be made.

is a random vector taking valuesin

Let the selected point be NIn where ]ilnjLn_]=Ln.
Apply NI to the environment, observe a loss Yn
n

and update H _, in the obvious way. That is, let
Ho=H, . except that (wI ,V?'],N?_],TI } is
n n n n
replaced by (wI ,7? . N? sy )} where
n 'n n n

?‘I‘ =+ N“I'l.?“l"l)/u + N7
n n n U (14)
n . n-1-
N7=1+NT
n n

(v) Now that we have made one observation at
the n-th iteration and have obtained Hn and Ln, we

have to decide which of the points W.,....,W, is

1°° L

most Tikely to have the lowest corresponding Ca1ue
Q(wi),i=],..,Ln.
from w],..,wL in the following way (notice that
it is at this"point that the procedures P1 and P2

are different from each other).

The new basepoint Xn is picked

With the proce-
dure P1, we Took for all the quadruples in Hn for
which

n

Nl 2 bn (i=1,..,Ln) . (]5)

Among these quadruples, pick the one that
corresponds to the lowest value 7? and let the
corresponding wi be Xn' Ties are broken randomly.
If there are no quadruples with N?gpn slet Xn=xn-1'
With procedure P2, we look for all the quadruples

in Hn for which

T1 < kn (1=l,..,Ln) (16)

and proceed in a similar fashion. We remark here
that the procedures P1 and P2 can be carried out
recursively,i.e.we do not have to check all the
quadruples in Hn all over again at every iteration.
The methods for reducing the computational burden
are standard and are left to the reader. Note
that P1 selects the basepoint among the Ni of Hn
with a large experience while P2 selects the base-
point among the wi of Hn with the highest "ages"

(i.e.,earliest birth dates).

(vi) We remark that it is up to the designer to
How Zé is updated
is left in the

These updating mechanisms can play an

specify the random vector Zﬁ.
or computed from Zn_],Hn,etc.
middle.



important role in obtaining a high rate of conver-
gence. In fact, it is in this stage that the vast
experience of the designer can pay off.

instance, 26_1 can be used to help generate wL in
n
In any case, the

For

a promising small subset of B.
nature of 26_1 and of the updating mechanisms is of
no importance whatsoever to establish the conver-
gence of the algorithm.

(vii) (ii-vi) constitute one basic cycle
(iteration) of the search process. Go back to (ii).

If the random environment is countably infinite,
then the algorithm can be modified because the
identification problem for points in B can be
solved. That is, if U$=1, {and thus wL is some

random vector taking values in B), then it is

decidable whether W, =y for some i with 15j:}n_1.
n

If this should happen, then of course Ln=L

(not : Ln=Ln_]+1) and we can proceed from step

(i11) to step (iv) for updating Hn-l’ For this

s1ightly modified procedure, all the theorems of

Another modification for

n-1

this paper remain valid.
which the theorems of convergence remain valid
(the proofs need minor modification), consists of

. . . e - .
rejecting wLn if Up 1 and wLn Wi, some 1<i<l o
In case of a rejection, other points are generated

(using new and independent Un) until one point is

found outside w1,..,wL . If the random
n-1
environment is not finite, if the support of G is

infinite and if nn>0 then this procedure is bound
to stop in finite time.

Both modifications are geared to prevent a loss of
information in the sense that, with the modifica-
tions, we will have for all n and all i,j,with
1'=1,..,Ln ;j=1,..,Ln 1143 , that wifwj.

Let Né,wi,Wé,... be the sequence of inputs to the
The reader will have no difficulty,
assuming that the random environment is countably
infinite, finding the description of the infinite
dimensional discrete probability vector according
to which the wa are to be generated, both with the
original procedure and the modified procedures.

environment.
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4. CONVERGENCE OF THE PROCEDURE

The random variables that are of interest to us
all have the form f(Zn) where f is a Borel
measurable mapping from R"Hk to R]. Let
XO’Xl’XZ"' be the sequence of basepoints in B
and let wé,Wi,Wé,.. be the sequence of inputs to
the environment. In classical optimization one

is mainly interested in

o b

n

QX))
while in automata theory, the expected loss at
epoch n is atfo important :
M= E(Y | @ .2 Y=
E N!
{Q( 2 (Hn_l.Zn,_l)]

(17)

= c"n'E{Q(WLn) [y 214 (18)
l1-¢ )b y
( n) {Q(WI)I(Hn—I'an”
. n .
(n=1,2,..) . .
Further we can also define
M = E{Y |(H .2 _,.ULU VY
={Q(wLn) iU =1 )
QWw._) fU =0
I n
n
where Mi,Mé,.. is the sequence of observed losses

We will see in
is of

if & were a noiseless environment.
theorem 1 that the convergence of Qn to Ynin
crucial importance in the study of the convergence
of Mn and Mé.

Let avb®Max (a,b) and introduce the condition

sup Q)| s K <=,

xeB (20}
We already know that if Qn vqmin»qmin in Lr ‘
(where r>0 ) as n+= (i.e. 1gm E{I(]nvqm"-qm,In

i=0) 1
,then anqmin*qmin1n probability as n-~ [10]. If

(20) holds, then the converse is also true. We

further have

M, = E(M | ;.2 )7 (21)



with probability one. In all the following

theorems we assume that the condition C1 holds :

Condition C1 : Let ZO’Zl"' be generated through

the procedure (i-vii) where BER", is a random
environment with search domain B, h;n},{sn},{Yn}
and {n} are sequences from (0,11, (b} (for P1)

and {knl (for P2) are integer sequences such that

ljpnjn ,15kn5n for all n and Unin”"
Theorem 1 :
(i) Let the conditions C1 and (22) hold.
lim an =0 ; lim Bn =1, (22)
n n :
If
Q vq + g in probability as n (23)
n “min min e
© sthen

MnV qmin - qmin in probability as nye .

If in addition (20) holds ,then anqmin*qmin in Lr
min~3

in probability
and in L, (for all r>0) as noo.

(i)

as n»~ for all r>0 and anq min
Let the conditions C1 and (22) hold.

anthl

If
-+ qmin WPI1 as na e (24)
then M W

an qmm Pl as nyo .

min *
Note that in
general it will be impossible to insure that
min”Smin Indeed, for the latter
type of convergence we need that Ta, < but this
contradicts the condition Lo, = that is needed,

as we will see, for the convergence of anq
Qpin 35 M in the sense of (23).
show under which conditions we can insure that
(23) is true.

Theorem 1 is proved in the Appendix.’

Mﬁvq WP1 as now,

min to
We will now

Theorem 2 (procedure P1) :Let the conditions C1,
(25) and (26) hold.

<
r . = o

n=1, 0 " (25)
n

lim (¢ v,.0-a))/(b .§ a)=o

n =1, ' ! Bt (26)

If the environment is either $(in which case (26)
is replaceable by the condition that bn=1 for all
n) ,or ey (t>1) and (27) holds, or xand (28)
holds,
87

n b/ ’z‘ o’1)1/(t—1) -
n 1=1: (27)

n
lim bn/log (v ai) = & (28)

n =1,

then anq >q in probability as noe.

min 'min
Theorem 3 (procedure P2)
(25) and (29) hold.

lim kn = o (29)
n
If the environment is either 8 (in which case we
can, but need not, let k =n for all n) ore, for
some t>1 and (30) holds, or X and (31) holds,

:Let the conditions C1,

n n k -
lim (g Y-(-a) / 5 oo z“‘,,i)l/(t-l)= .

n i=kn+1, i=1, i=1,
(30)
lim (; Y,.(1-a) / l'zl o) .(log kna )-I
L S e B A R
(31)
then anqmin»qmin in probability as n-ow.

The proofs of theorems 2 and 3 are given in the
appendix. Let us briefly discuss some of the
conditions of convergence. Notice that bn can be
considered as the minimum experience required for
any wi in Hn to be a candidate basepoint with
procedure P1 ; on the other hand, n-kn is the
minimum age required for any wi in Hn to be a
candidate basepoint with procedure P2.

Condition (25) not only insures that,WP1, Ln*w but
also that with probability one there is an infinite
sequence of points wi that are generated by the
“random generator" (thus having distribution
function G). Notice that if Ln is large, then all
the N? are sma]],i=1,..,Ln and thus the V? are
relatively noisy estimates of the Q(wi) (how noisy
depends of course upon the type of environment ).
If Ln is small, then the N? are large, but at

the same time, the probability that any of the
Q(wi) is close to Umin is small because Hn contains
Thus there should be a trade-off
between the size of Hn (Ln roughly increases as

9 o,
i=1 !
age of the candidate basepoints. This is exactly
expressed in the conditions (27) and (28) of
theorem 2. Condition (26) insures that given bn,

so few members.

as we know) and the minimum experience or



enough points are available in Hn for which
N? i»bn' Conditions (30) and {31) in theorem 3
are the counterparts of (27) and {28) if one

remarks that

"
P

i=}a P,

n
',Vj.(l-:xi) / ‘;; cri

i=1,
can be considered as the minimum experience
associated with any wi in Hn with birth date
Tiikn (i.e. points that are candidate basepoints

with procedure P2).

It is not hard to see that P1=P2 if bn=1 with P1
and kn=n with P2. This procedure is easily recog-
nized as the classical random search algorithm
for deterministic environments (see [6],[8]).

Let us give an example of sequences {an};{en},{vn}.

~n},{bn} and {kn} satisfying the conditions of
theorems 2,3. For any nonnegative number sequences
2} and fc .}, we say that an=0(cn) if there exists
a K with 0-K-» such that a K.c for all n. Let
for some K2,K4,K5 from (0,~) :

. a

= Kz/n ; ansl/Z for all large n ;

[

n arbitrary (32)
b = b -1 g -1;
Dn' K4'n ’ (n =O(n);Tln =
oy s kK
n

where, obviousiy, a-0,b-0,k-0,g9-0,h>0.

It is a straightforward exercise to show that (25)
is implied by a+h-1, (26) is implied by a:g+b,

(27) is implied by b-(1-a)/(t-1),(28) is implied
by b-0, (29) is implied by k-0, {30) follows from
n-a - (1-a)k/(t-1) and kn/n/2 for all n large
enough , and (31) follows from g-a and kn<n/2

for all n large enough.

7. CONCLUSION

A probabilistic automaton with an expanding memory
is presented. The important feature of the pro-
babilistic automaton is that all the past observa-
tions are used which makes the technique informa-
tion intensive. The automaton is constructed in
~urh a way that the size of the memory is contin-
urunly growing (which enables the automaton to
#.t, 2% a search procedure) and that the accuracy
ot the information that is stored in the memory
iw continuonsty improving with time by virtue of
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an averaging process (which makes the automaton
suited for use in stochastic environnents).

A detailed study is made of the properties of
convergence of the automaton. Among other things

we proved the optimality of the automaton in a large
class of random environments. To achieve this
optimality, it was shown that the rate of increase
of the size of the memory and the rate of in~rease
of the accuracy of the information that is stored
in the memory have to satisfy a trade-off condition
that dehends upon the noise characteristics of the
random environment.. The advantage of the technique
is that the class of allowable stochastic perform-
ance indices includes the class of all Borel
measurable functions on R" that are bounded from
below. We did not intend to present a procedure
that is quickly convergent. For this, it is
necessary to use the freedom in the design of the
automaton as well as possible.
seems natural to use the information contained in

H

In partictlar it

n-1 .
(i) to direct the search process (see stage

(i1i) of the algorithm). If Un=0, use the data in
Hn-] to determine promising subregions of B, out-

side W,,..,W
! Ln-1

a variable distribution for wL

One can for instance consider

that puts all of
its weight in a small neighborﬂood of those points

Wiol

j 5j:Ln-1 with low corresponding estimates Y?'].

(ii) to control the sampling process (see stage
(iv) of the algorithm). If Vn=-1, use the data in
H,.y to determine which W, of H _, need more
sampling. To do this we can be guided by the same
sampling techniques that are in use for finite
probabilistic automata in finite random environ-

ments ¢see,e.n. [5]).

The heuristics used in (i) and (ii) are of the
utmost importance to obtain high rates of conver-
gence. One of the reasons we are particularly
interested in high rates of convergence is an econo-
mical one. Given a certain stopping rule, it is
hoped that Qn is close to Ymin at the stopping time
and that, at the same time, the size of Hn is not
excessively large (because of the limitations for

the active memory in the computer).




We remark that in general random environments, our

technique is competitive with random search which
requires only a fixed finite amount of memory
from the computer. Thus, the expanding automaton
should be used when the effort of storing all the
past information can pay off, i.e. when the cost
of making observations is relatively high or when
Q is very "abnormal" or when the environment is
extremely "noisy".

8. APPENDIX

Lemma 1: Let Yl""’Yn be a sequence of

independent random variables with

Y]. = 1 with probability ay

0 otherwise
where o {0,1]. Then,
n n n
P{Z Y s35 o} <eP{-3 ¢/10]}
. S i .
i=1, i=1, i=1,

and n n
P{| = (Yi-ai) |2 (1/2) £ @3
i=1, t=1,"

n
< 2 exp{— T 01/101 .
i=1,
Proof: Let

n
- 2
o*iq l.zE{(Yi—E{YiD } =
i=1,
n 1 n
n! v o{l-a) <n 1.2 o,
S 1 i R 1
i=1, i=1,

From Bennett's inequality (e.g., see equation 43
of [13] and use the inequality log(1+u)>2u/(2+u)
for u>0 )} we know that for every ¢>0:

-1 n 2, 2
P{n ".g (Yi—ai) >¢) < exp{-ne /(20 +¢)}
i=1,
-1 n 2 2
P{n ". % (Yi‘ai) s-¢} s exp{-ne /(207+¢)
=1, R
2 1 M n
With o“<n 'igl,“i and e=(1/2n).%_; oy, we
obtain the bounds
n

-1 n n
P(n . zY <(1/2n). z o;}< exp{- ¢ 01/10)

i:l,i i=1, 1—1,

and L n n n
P({n .:¥ =(3/2n). 5 ¢ sexp{-z o/10}
i=1, i=1, i=1,

from which lemma 1 follows trivially. QED

Lemma 2: Let {an},{cn} and {dn} be nonnegative
number sequences such that {dn} is bounded. Then
© 11
5 an= w and lim d .y C, ==
n=1, n i=1,
if and only if there exists a sequence {kn} of

integers with 1§knin for all n and

kn n
lim § a, =« and limd .y C ==
n i=1,"' n i=k_+1,
n
Proof: (if part) By hypothesis,
n n
dn.zcizd.): C, + © aS N

]
And n i=1, kn i—kn+11

¥ a = 3 a,
=1, =1,

- © @S Ngo ,

(only if part) We need only find a sequence {k,}
of integers with kn-m as n+» and

n
d .z C, 4 © a8 li4o
Dok 41,
n
b s ©
ecause v a =e andlimk ==
n n
n=1, n
imply that kn
lim 3 a ==,
n i=1,
Now, if « » then n
= Cn<a: d .3 C, 4w 3S N
n=1, i=1,1
implies that limd =« , but
n
n

this contradicts the hypothesis that {dn}is
bounded. So we can assume that ; C =

n
n=1, -
Let kn be the largest integer such that

n ’ n
5 ¢, > ¢ Ci/2 .
1=kn+1, 1——'1,

It is clear that kn is monotonically nondecreasing
and that if knfr o 3s n+«, then kn—>K<-=o, and,

in fact, kn=K for all n large enough. Because kn

is largest, we have for all n large enough:

n n
) ¢, s T ci/Z
i=K+2, i=1,

so that Kel
5 c, < ¢ ¢
=k+2, 1 =1, ©



for all n large enough. But this would imply that
k)
< 2. %

«w

N C N (:n <<
wsl, n=:l,
which is a contradiction with « ¢ =y
lim k=« nel,
Therefore, - and
1 . 1} -
“ ¢, n (@ /2). u ¢ e A8 D
n i;;;; 1 S =1,
QED
Lemma 3: If {c,} and (dn} are nonnegative number
sequences with lim Ch == then
n

lim ¢ .e-)"dn = 0 forall »>0
n

n
if and only if

lr1lm dn/log c -

o

Proof: (if part) Assume, without Toss of
generality that h >1 for allt n. Given 2>0 find
an integer N such that for all n>N: dn>(2/A).1og Cpe

Then
c“.e_x'dn < ¢

(only if part) Assume, without loss of generality,
that cn>1 for all n. Suppose that dnllog n f

_(._.'2 log ¢ 1/cn + 0as naw ,

Then there exists a constant M<e and
a subsequence {n'} such that dn'/1og Cprs M for all
n'. Thus,

as N+,

.e-dn'/M = c

, o} ‘.(:-lcg “n’
n

=1

i

for all n'. Therefore, cn.e'dn/M does not converge
to 0 as n+«, contradicting the hypothesis. Q E D

Lemma 4: Let {a,} »{b,} and {cn} be nonnegative
number sequences.
(i) If r>0, then

r
lim an/bn 2 0

and lim bc =0
N ] nn

I

for some sequence {bn) if and only if
Jim ancn =,

(1) Let 1im a. = ». Then n
n
n
i a c—)‘b" =0 for all A>»0 anilim h ¢ =0
n nn

n N

for some sequence {bn}' if and only if

90

e Men

1im an = 0 for all A>0

n

which, on its turn, is equivalent to the condition:

lim cnlog an = {)

n

(i,"if" part) ;‘H
bc = r_ 1 t/(vl) r/(r1)
nn f-"n/bn 8, *Ch =

Proof: Let b = an/cn. Then

r,1/(r+ 1)

(ancn) 20 23S Nae.

cr=(

(i,"only if"part) nn

r
(bpc,)
(ii,"if"part) We remark that cn1og an->0 as n-+o
if and only if a
n .
as n-+« for all x>0 by lemma 3. Choose

. r
Tr1v1a11yf a an/bn).

+ 0 as n-+w,

e"x/cn_'g

_ ; 1/2
bn = log an / (cnlog an)
) 1/2
and note that bncn (cnlog an) and

-1z, The theorem follows if

b,/10g a, =(cn Tog an)
we note that, by lemma 3, ane')‘b"-»O as n+= for
all x>0 in view of bn/1ogan+w and 3, > as n -,

(ii,"only if"part) Trivially, employing lemma 3
again,
cnlog an = (bncn)/(bn/log an) -+ 0@as nae .

QED

Lemma 5: Let t>1,0<C<~, and let Gy ¢ be the
]

class of random variables Y with E{Y} = 0 and

sup EC|Y] B1 <. Let Yys¥ps.rsY, be 11d random
Yely,c

variables that are distributed as Y. Then for

each €>0 there exists a constant K depending upon
e, t and C such that

P{

J { k! t Y |2e}} s kK/nt!
IR L B , (42
’-;'_:n' 1::1'1 ( )

sup
Y(ut,()
Let § be the class of random variables Y with E{Y}
= 0 and with the property that for every 6>0
there exists a ¢(8) > 0 with

sup E[e)\Y'g < e'}‘ ,5

Yed



all ve [-c(s),+c(8)], (43)

Then for each >0 there exist numbersB>0 and
M>0 (both depending upon ¢ and the function c)
such that

1

sup P{ y {|k ",

k
£Y.|=e}}s Mo D"
Yed k=n, i=

1, * (44)
Proof:(42) is obtained by inspecting the proof of
[11,theorem 1]. To show (44), let >0 be
arbitrary. We will extend the proof of a theorem
of [12]. In particular, we show that (44) holds
with B= c(e/2).e/2 and M=2/(1-e"B). Let Y be
a random variable from 4 and note that by
Chebyshev's inequa]ity and by (43),

-1 -

PEIR™ 2 Y [ae) s e Mok,
i=1

’

AY  k -AY_k

(Efe” "N+ (ELe™ "5

a L LA U | SV S A el-cle/2) . +c(e/2)]
< ze-—k.c(e/Z).e/Z

< 2¢

by choice of

= ZG—B ~ .
© -1 k
Further, P{U {]k ". 1 Yilael}s
k=n, j= R
@ -1 k
ORIk Tiz v |2e) -
ken, =1, 0
= -Bk - _
=L Ze < (2/(1-e B)).e Bn _ M.e BR
k=n, QED
Proof of theorem 1: Let >0 be arbitrary. Then,

if x{ } denotes the indicator function of {.},

P{M -
{Mn>qmin+€ | (Hn-l ,Zn_l)l

@ P

L PR (WLn)>qmm+ elar | Z N

+ (l-an) .P{O (Wln)>a.

: Z
min' € I(Hn—l ! n-I)]

< an + 1-—Bn + Bn' X{Q(Xn-1)>qmin+ e}

and

' . <o +1-B +
P{Mn>qmin4 ¢} n n

PQEX _)>a ; +e)

9

which tends to 0 as n+>= in view of (22) and (23).
If (20) hoTds, then IM,',IS_K](’" for all n so that
MAvq

min * 9pin N Lr for all r>0. Also, under

(20}, M vq

WVYnin * 9pin 1N Lr‘ for all r>0 if and only

if anqmin>qm1'n in probability as n+«. But

note that E{Mn} = E{Mr"} so that the "in probability"
part of theorem 1 is proved. For the second part
of Epe theorem, we remark that

P{kgn,{ Mk>qminJr e } =

-G 7
P{kgn fo +1-5,> /21 1]

©
+ P{ ¥] {Q(Xk_l)>qrnin+c/,2} ]

k::.nl
o .
=P{ U {Qx >
kzn'{Q k—l) qmin+°/2]}
for all n large enough in view of (22). Thus, if
anqmin"qmin WP1 as n+«, then
anqmin"qmin WP1 as n+ o, QED

A
Proof of theorem 2: Let a0=1 and note that the

n
sequence {1/bn. T ozi} is bounded. From (25),
i=0,

(26) and lemma 2 find a sequence {kn} of integers

with k

lim k_=e ; lim I T =w;
n i

n n i=1, :

n n

: Y o N AV =
lim (]/bn'. ,)..L Yi'(l i)
n . i=0, 1=kn+1,

Let >0 be arbitrary and define the following
events: n n

= n .. AT )
An4 igl l\‘)(‘“i)"qmin\LC/Z}

L ’

n oo n
A = QW « \
nS 121 {{{h{i Qv i)|_<./4}r!{1\.i >

1 Trl
bn}}J fI\i <bn}}



AnOL- {Q('\n)-‘."lmin+ ¢}

> il A Na A ’
_Notinc_, that Anl Y\“z; ‘n3 \ r,l\ 5 G A no

w have

4 § ¢}
P {A P{Anl} P{Anz} F

no 1=

p{n ".’\ ,CA 3] P{A }+P{A PA Y

(45)
where (.)c denotes the complement of a set.
By lemma 1,
n
P{A 1} = 2Zexpl-1 @ /10) (46)
1;—{0,
n
P{A c} sacoupi{-¥ «/10}) (47)
n2 " =0 1
= ?

If X denotes a random vector with the
distribution function G in Rm, then we know that

P{Q(X)<q ;,*e/2} = £>0. Then, using lemma 1

again:
LN <1{ ]" {QwW>a . +re/2} )
, kll k‘n a //? }
51{1 1 tU-—u_n oy, 1
k : k
n
P {., ’{U' 721-5:1 /2
- ?
Lkn ~pe 24n
..",1 {Qav)>q  re/240
1= .

U e { =
(U, =13 {U, ~033 3
i i
k

n
s exp{- v ¢ 2 /10% + (P
PO B | ! .
i-1, :
kn
) /2
:,:1 Ty
q . re/2) '
nin
Ky .
g 2 oxp{ Lin QA0 8/2) 00 oy i
i=1,

(48)

R1 (and mean Q(x),obviously).

Further,

. L
[} n -n
P{Anlmns} < P{1Li1 Yy, -Qw) =

n
(32. % “i}

n
\ ], =
6/4}n(1\i "bn}},'xn Z

s (3/2). 2 @ .Sup P{u [|Y

)—Q(x) |2¢/4})
i=0," x¢B -—-bn

where 7( 1) is the average of 1 iid random

variables all having distribution function F in
By lemma 5, we can
upper bound the 'last term by

(3/2). 2 % -g(e,e,b ) (49)
. 1=0, .
where
gle ., e 'bn) T
0 1f‘6', is 8
Kz/bnt'1 ife s e, for some
t>1 (K2>0 depends upon & and €)

=Ky b

K3 e n if e is ¥ where K3>0 and

K4>0 are constants depending upon € and e,

We also have that k | . n
o] ‘n .
P{AnanzMn3} s (3/2) . _z' :yj 'P{l+ %' L
=0, i= Ln+ 1,

Xt <b ; s
{U{=V;=0}""n L =@r2). ¢ o 1.

i=0, (50)

Note that E{X{u;=vi=0}“1‘-1} = vi(T-ag)/t

with probability one.

for all n large enough:
n
b < (2/30),

As we pointed out, we have

n
v.(1-«) / T @
1—k+1 Y i 1’=0,1

Therefore, (50) is for all n 1arge enough upper

bounded by (3/2). Z “1 . P{ ).4 {qu._v =01
i=0 : i- ;: 4‘1, i i .
‘ n n
"'E{X . |L _ =(3/2, 2 o o
{l;i-»\j 0171-1 i==0,’



n _ n
<-0/2).(x  v,Q-eD)/(R/2) 2 %) | L =

i=k +1, i=0,
n
n
(3/2). 5. a. }
. 1
1’:0,
| 3% n
s 3/2)z o .exp{-Z
i’_:ol i=kn+1 N

) n
v (-e) /@0/2. E 9))

o,
kp -b
s(B/2)F %.e ",
i=0l

(51)

We remark that for all the environments considered

in theorem 2, 1im P (A ] ACy=o0. Further, (25)
n n n5

Lo c c C
implies that P{Anl }+P{An2}+P{An4 }1-0asnsw

in view of (46-48). Finally, by (51); for all n

large enough,
P c n -b
B MM Gl < (3/2). 8 o o™ L
as Naw =0
in view of kn < n and (28) (where we use the fact
that (27) implies (28)) for environments that are
¥ or et for some t>1. Thus, for these environ-

ments, 1im P{An(c)} = 0 for all >0 in view of
n

(45). If the environment is &, notice that

P{Anﬁ} < P{Anﬁ} <2 exp {- Min (1/10; ¢/2).
k

.n “i"i} + 0 as n»>= in view of (25-26).
i=1, .

However, with bn=1 and kn=n, the condition (26)

is not needed. QED

Proof of theorem 3: Consider first environments
that are e for some t>1. By lemma 4 and (30),

we can find a sequence {bn} of integers with
bn_>_1,

k
n -
lim (g ai)/bnt 1=o (52)
n i=1,

and

n n
HmobAE a)/ln v0ig)) =0, (g

n i=0, i=k +1,
n
Let ¢>0 be arbitrary and define AnO’Anl’AnZ ,An3
and An4 as in the proof of theorem 2. Let
further
Lkn —n
A= N {|Y -QW,) [<e/4
né =1, i i I } (54)

and note that AnlnAnznAn:’.nAnrlnAnegAnO *

Therefore,
Sen © c c ) C.
! {AnO }sP {Anl J+P {AnZ .H P [An 1 ﬁl\nZ nAn3 W

o ¢ c
! {An-'l} +P{1\n2mn3m‘n6]- (55)

We recall from the proof of theorem 2 that
c c kn
P{a 1+ Pla o) s dexp (-5 « /10) (56)
n i=0, !

k
P{Anz} <2 exp {-Min (1/10;£/2). En o T } (57)
i=1

’

and, in view of (53), for all n large enough,

k
c n -b,
P{A [PA LM 21 < (3/2).i;z0 @ .e (58)

Next, using an argument as in theorem 2,
c n '
P{Anzmniimns} < (3/2). % '“i .

i=0.

PrU (1Y, .-
20715, (Moo ooan

k

< \‘n . b))
L RERARIITENE -

kn
BKy/2)(x o)/b bl
=0, ' B
where g(.,.,.) is defined in (49) and K, is a
positive constant depending upon€and e. It is
not hard to see that lim P{Ang} = 0 in view of

n
(55), (56-59),(29),(25) and (52) {where we use the
fact that (52) implies that the right-hand side of
(58) tends to 0 as n-w).




, s c c
If & is deterministic, then P{Ano} < P{An4},
which can be bounded as in (57). Clearly,
Tim P{A 5} = 0 in view of (25) and (29).
n n
If € is ¥, then, by lemma 4 and. (31), it is
possible to find a sequence {bn} of integers with
bnzj, (53) and
k
lim ( );n CV.)QO—)‘bn =0
i .
‘n i=1,

for all x>0, (60)

A1l the terms on the right hand side of (55) are
bounded as for ¢ ¢ type environments (see (56-58))
with the exception that for some constants K3> 0
and K4>0 (depending upon’gand ¢):

2? «).e K4bn.

i=0, (61)

Again, it is not hard to see that 1im P{Ang} =0

cy "
P {Anz ”"na PAnG } < (3}\3/2) N

: n
in view of (55-58), (60) and (61). Theorem 3

then follows from the arbitrariness of e. QED
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