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A new class of random search algorithms for
stochastic optimization is presented.The designer has
the option to employ a learning memory in order to
reduce the cost of the optimization process measured
in terms of the number of observations.The asympto-
tical properties of the procedure are discussed,and
new probability theoretical techniques are used in the
proof of convergence,

I.Introduction

Let Q be an unknown real-valued function on a
set Be R™ where m21.,In many applications,one is in-
terested in finding a w in B for which Q(w) is nearly
minimal, Because of the absence of any information
regarding the continuity,differentiability,smoothness
or unimodality of Q,or because of the special nature
of B (for example,B can be a countable set of isola-
ted points from R™),it is not possible to use a
classical optimization technique such as the gradient
method..It is known that in such situations random
search can be successfully used (for a review of the
literature, see [1,2,3]).

In this paper,we are interested in the stochas-
tic optimization problem,that is,Q(w) is no longer
exactly computable but can be estimated if enough
observations are averaged.To be explicit,it is assu-
med that for all wegB,one can observe (compute,etc.)
Y1 sees ’Yn’ ...where the Yn are independent random

variables all distributed as Y with distribution
function Fw and mean Q(w)=fdew(y)=Ew{Y] .

Several people have tried the random search algo-
rithms used in deterministic optimization with the re-
sult that there are as many heuristic random search
methods as there are scientists studying the stochas-
tic optimization problem.

The most widely studied random search techni-
que for stochastic optimization is the algorithm of
Gurin [4] or one of its modifications [3,5].Gurin's
algorithm is simple and can be used for general B
and Q.However,the task of proving the convergence
for the modified methods has become increasingly
difficult. Furthermore, Gurin's method {s very inefficient
with respect to the number of measurements (obser-
vations).If B is a finite set of points,one can use
stochastic automata with a variable structure [6,7]or
probabilistic strategy selection methods [8], most of
which are proved to be convergent in some probabi-
listic sense.lf Q satisfies some regularity conditions,
usually in terms of continuity,differentiability and
unimodality,local hill-climbing methods may be used.
Most of these techniques are derived from the Kiefer-
Wolfowitz stochastic approximation algorithm [10,11],
the stochastic gradient algorithm {12-15]) and combi-
nations of these algorithmsg with stochastic automata
and random search [16-17],For instance,if Q is con-
tinuous and if the accuracy of the solution is of no
great importance,one can always partition B into a
finite number of sets and consider each set as a
single point in a new space,thus reducing the prob-
lem to a finite optimization problem (see [9]).

The classical random search algorithm {s a se-
qugnﬂal procedure to update the best estimate of the

minimum in which in the search for a new best esti-
mate,only the very recent history of the search is ta-
ken into account.This algorithm thus operates with a
short memory.However,over the last five years two
factors in the design of optimization systems have
changed.First,the computers have become very fast
and can handle very large active memories.On the
other hand,the cost of taking measurements (i.e. col-
lecting data,evaluating a performance,etc.) has gone
up considerably because of the increased cost of man-
power.This has made the cost of the storage and pro-
cessing of data decrease relatively to the cost of ob-
taining the data.This trend has been recognized by
several authors (e.g.[18]).So,one wants to develop
an algorithm which

(i)uses the available information as well as pos-

sible,e.g.by storing the past observations and pro-

cessing the data obtained during the search in an

. intelligent way,

(ii)guarantees that the best estimate of the minimum

converges,in some probabilistic sense,to the mini-

mum of Q.

In this paper a statistical search method is
developed with a potentially growing memory.The rate
of convergence to the minimum is expected to be high
due to the learning behavior of the memory.Maclaren
[19] proposed,in a control engineering application,to
use a stochastic automaton with a variable structure
and a growing number of states to tackle a special
stochastic optimization problem.However,the conver-
gence problem for his method is not satisfactorily
solved while the field of applications is very small,
Our approach does not resemble any other method
available in the literature and is partially modeled
on the learning process in the human brain."Remem-
bering exceptional facts", "forgetting the too distant
past" and "averaging costs" are features that can be
recognized in the algorithm.The theoretical value of
the method is that it encompasses the well-known
random optimization method of Matyas [20] for deter-
ministic optimization as a special case.The emphasis
is on the new method for proving the convergence of
the algorithm in stochastic optimization problems,The
techniques,different from those employed in [4,5],de-
pend upon some powerful probability theoretical in-
equalities [22).

1I.Problem Formulation
Let (£2,G.,P) be a probability space and let
B be a closed set from R™, Let ag be the o -algebra

of all the Borel sets that are contained in B.We as-
sume that there exists a measurable mapping h from
(H.XB,GXBE’) to (R,p) where B is the class of Borel

sets from R.Notice that for every w in R, Y=h(w,W
is a random variable on (f2,G,P).We say that a col-

lection
e = (F,|weB) (1)

of distribution functions is a random environment n
with search domain B if B is a closed set from R
and if there exists a probability space (f2,G.P) and
an (()xB,Gxa'B“)-(R,a) measurable functlon h such
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that for all yeR, Fw(y)-—-P[w | we {2, h(w,w)sy} .Notice

that if B is countable,then such a probability space
and a measurable function h can always be found.
Thus it makes sense to define a countably infinite
(finite) random environment as a countable (finite) col-
lection of distribution functions.The reason of the de-
finition (1) is the following.If Wis any random vector
on some probability space (/2',G',P') that is different
from ((1,G,P) and W takes values in B,then Y=h{w, W)
is a random variable on the product of both probabi-
lity spaces,Furthermore,if Wl, e ,Wn is any se-

quence of random vectors (all taking values in B)
that are applied to the environment,then there exists
a sequence Yl' - 'Yn of random variables (referred

to as responses o the environment, measurements,ob-
gervations or observed losses ) where,given that

W1=w1 Feae ,Wn=wr1 (W163:1=1 ++...0),the Y1 are in-

dependent and have distribution function l’-‘w A=1,...,
i

n.

We will refer to Q(w)=J' ydfw(y) = EW{Y} as the

stochastic performance index .Q is by assumption a
Borel measurable function from B to R.Except for B,
we assume that there is no a priori knowledge about
e or Q.The stochastic opti mization problem is to
sequentially find a value w in B for which Q {s mini-
mal or nearly minimal,

We assume that there {8 a random generator
with support in B,i.e.a device for generating a se-
quence Wl. vee ,Wn, ... of lid (independent identical-
ly distributed) random vectors taking values in B and
distributed as W where W has a distribution function
G which is either known or unknown.The minimum of
Q with respect to G is

qmin = ess inf QW) (2)

where the essential infimum is defined as usual (2].
Actually,qmm is the unique number with the property

that for all ¢>0, P{Q(W)Sqmm-c]so and
P{Q(W)Sqmm+c }>0 provided that qmm>-e.We remark

that if B is countable,sayﬂB={wl,w2,...} ,and G
puts mass g, at w, such that £g=1 and Osg'lsl for

all i,then g = inf Q(w,) .In this case we see
min 1:9,>0 i

that qmm is independent of G as long as. every w1

receives positive probability from G.
We categorize the random environments with
search domain B-as follows.
(i) e is S (deterministic,noiseless) if for all weB,
Y=Q{w) wpl (with probability one).
(i) e is e, for some t>0 with parameter L<wo if

sup E{|Y-Q(w) | t]=;up [ {y-Qw) Ithw(y)

weB eB
f£L<co (3)
(tii) e is § (generalized gaussian) with parameters ¢
and L (0go<w ,0sL<w) if
2.2
sup E (MY QW ¢ oo /2(1- A L)
w
weB
for all 3 with Ja|L<l.
1f an environment {s § then it certainly is & _for all
t>0.A deterministic environment is always gaussian

and if e is e for some t>0 with parameter L=0, then
¢ is deterministic.Also,if & is et then ¢ is es for

all s<t.It should be pointed out that most environ-

ments of any practical interest are generalized gaus-
sian.For instance,if all the F are gaussian with va-
riance az(w)sc ,then & is J with parameters ¢ and

0.If to all Fw correspond probability measures that
put their weights on [dl(w) ,dz(w)] where d_z(w)—dl(w)

<L,then ¢ s generalized gaussian with parameters
L/2 and L.In particular,if for all w in B,Y takes with
probability one values in {0,1} or [0,1],then ¢ is
§ with parameters 1/2 and 1.Such environments are
often encountered in stochastic automata theory and
discrete optimization.

The purpose is to find an optimization pro-
cedure that generates a sequence of random vectors
w .,Wn,... taking values in B such that

M:x(Q(Wn),qmm) tends in some probabilistic sense

to qmm as n-+o . Notice that we have to allow for the
possibility that Q(Wn)<qmin for some n.Of course,if
Wl, ...,Wn,... were a sequence of iid random vec-

tors distributed ag W,then Q(Wr-l)zqm n wpl for all n.

i

111, The Optimization Procedure’
Let {an] and {an} be sequences from [0,1]

with @ + snsl for all n,and let {xn} be a sequence
of positive integers, Further,let Zl,Zz,... be a se-
quence of independent integer-valued random variables

with
p{zn=1]=an ,1={zn=o}=an ,P{zn=-1]=1-an-an.
(4)

To start the search,generate a random vector W6=w

having distribution function G.Given that W'6=w, 10

,all having

0

measurements are made,say Yi R ,Yi

0
distribution function Fw.Let the estimate of Q(w) be
YB where Xo
Ye= (1 Y')/xg. (s)
i=1,

Let Y =Y* and N0=N6=\0,where N0 is the number of

00
observations that were used in computing the average
Y .The search procedure consists of generating two
sgquences of triples,(W;,Y;,N;) and (\/\Il_l,Yn,l’\Il_l),n=

L 3 L AT
1,2,... where (W‘('),YO,NO) (WO,YO,NO).Wn is the

estimate at iteration n of the minimum in R™ of Q.

Y s the corresponding estimate of Q(W ) and N _is ’
tl'?e experience with W_,that is,the numb%r of obg‘er-

vations that were used in the computation of the es-

timate Yn.

Let the search be at iteration n,Then Wa is
generated as follows.
(i) 1f Z =0,let W*=W .
n n n-1

(1) If Zn=1,let W; be an independent random vector

with distribution function G.
(111) If Zn=-1,W;'1 is arbitrary with the restriction

that P{W*¢B}=1.
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Given that W;=w, N:\=)‘n observations are made,say

Y‘l, ...,Y')‘ ,all having distribution function Fw.Let the
estimate nof Q{w) be
(z Y/, ST (6)

i=1,
Two questions naturally arise;(1) How does one pick
W; if Zn=-1 and how can the past observations be
used to aid in picking W;? (2) Bow does one find
(wn'Yn'Nn) given (W* Y* N*) i=0,1,....n and

?
(W“_1 Yn 1 ) We wlll refer to W as the

basepoint and to (Wn,Yn,Nn) as the base triple.

In Gurin's algorithm [3-5],to make the decision
in answer to question (2),it is required that X _ ad-
ditional measurements be made with W to obtain
an estimate Y of Q(W ) The declé’lon is based

upon a comparison between Y and Y; ,that is,
W =W
n

-1

unless Y >Y*+e (where ¢ >0 is a thres-
n-1 n n n

n-1
hold),in which case W =W*.However,valuable data

are wasted since Y is forgotten and thus,it is as

if Nn 1 measuremer'&s are thrown away at the n-th

iteration.Therefore,we will not require to make spe-
clal additional observations for the decision (2),thus
reducing the total cost of data collection.

Let Hn be the data,outside the base triple,that

"N"),...,

T ) and where T is a nonneqative integer

are memorlzed at time n where H =(W“
(W T N
valued random variable .If T =0,then H_ is empty If
T sM<e for all n,we say that the algorithm operates
w?th a finite memory. If Tn-w- as n+e« then we say

that the algorithm operates with a growing memory.
We require that Hn be a measurable function of
the (W:,Y;,N;),ho,l,...,n and that at all times
n n
wn’wl"”’w'l'
and T sn for all n.
e now continue the description of the algo-
rithm.First of all,it is clear that in picking W; if

are pairwise unequal.Therefore, T0=0

Zn=-1 ,we can expect help from H n-1 and (W
Y /N, _)).Given (W YX. N} (W .Y ,.N )and
Hn_l,we will compute (Wn Yn Nn) in two steps.

First an auxiliary triple (W*,¥*,N*) is obtained.De-
fine a random variable Sn where

Sn=1 if W*=W

s =2 if W*'f—Wn ];or some Wn-from H -1

Sn 3 otherwise (7)
Note that S, ,w'l‘t!.
W are pairwise unequal.Define further the mer-

gind bt two triples,(W,Y,N) and (W,Y" N
lows:
(W,Y,N)*(W,Y" ,N")=(W, (NY+N"Y")/(N+N") ,N+N*)
{8)
Thus, the experience of the new triple is the sum of
the experiences of the component triples.

is uniquely defined since wn_1

"),as fol~

. . ¢ Fi*
Define (Wn Yn Nn) by

([(W* Y* N* *
(wn'Yn'Nn) or (W ,Y*,N*)*

W YN ) 1fs a1

(W+ ¥+ N*)=
n n n

* Y* N*) or * Yk N*)*
4 M(&p | ‘p) Nn(V\)f) o N )

i

1f s =2 and w*=w" -1

* * * =
‘(wn'Yn'Nn) Af Sn 3 (9)
where,if S =1,one either always merges or never mer-

n

ges and,if S _=2,one either always merges or never mer-
ges .The merging operation can be randomized but this

will only complicate matters now.The consistency in the

use of the merging operation and the fact that W 1 and

the W1 ISIST 1,eu'e pairwise unequal for all n are

important factors in the proof of the theorem of con-
vergence given below.

The next step is the decision whether to pick
(Wn_1 - 1, ) or to select (W* Y* N*) as the

new base triple Let Dn be a random varlable taking
values in {0,1} where D =1 only if the old base
triple is updated at the nfth iteration. Thus,

= w
Dn - 11 if Sn 1 or Yn<Yn-l (10)
0 otherwise
and - =
* * *
(wn'Yn'Nn)= {(wn'yn’Nn) HD =1 (11)
(Wn 1,Yn 1’ )1£D =0,

The only thing that is left is to obtain H

from H

n

* * *
> n-1 and (Wn,Yn,Nn).To make sure that Wn and
w ,1‘1"1‘ , are pairwise unequal,the following pro-

cedure is suggested.

(1) IfS -2 and W*-W“ ,remove (Vf;-l, l) from
H
n-l
(11) If Dn=1 and Snyll,add (Wn_ 0 1, ) to H 1

or add nothing at all.If Dn 0,add (W;,Y;,N;) to
Hn_1 or add nothing at all.

(11i) Any triple left in H after (i) can be dropped
if desired,Dropping krlples corresponds to a
loss of memory but can sometimes be more econo-
mical.

(iv) Relabel all the triples left after (iii) so that to
all lsls'rn ('1'n is the number of triples) there cor-

responds one and only one triple (’W’;,\};,N':).Thls

relabeled sequence of triples is H_.
The method of deciding whether to add or to
drop triples from Hn—l (In (i), (1i1)) is not specified.

In fact this decision may depend in an arbitrary
fashion upon any information available at the n-th
iteration.The decision may be randomized and can,in
an extreme case,also be made through human inter-
vention in the search process.

Given (Wn,Yn,Nn) and Hn,the above described

procedure is repeated for n+1,that is,the generation

of (W* ) (see (6)),the computation of
(We ML n+1’ ) (see (7).(9)) ,the decision concerning
(Wn”,le, n+1) (see (10-11)) and the determination
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of Hml (procedure (1)-(iv)).

Remarks : We note that the algorithm can be used
with Tn=0 for all n.Notice further that T =0 and that

0
OSTmlﬁTnﬂ for all n.The memory can be labeled as

a learning memory either because the N* are increa-
sing (in view of A +® as n+=e ,or because of the
merging in (9)) or "because T 4+« as n-+o.Surprising-
ly,the convergence of the alggrithm is not affected
by the finiteness or divergence of the sequence Tn'

The undefined parts in the algorithm are
(a) The generation of W; if Zn=—l.

(b) Steps (ii) and (iil) in the updating of Hn-l'

It is up to the designer to use (a) and (b) to obtain
high rates of convergence.Of course,some experimen-
tal know-how will be helpful.Let us briefly discuss
the problems (a) and (b).We say that Q and B define
an exhaustive search problem if for every finite gub-
set {wl, cee ,wL} of B,the knowledge of Q(wl) renes

Q(wL) does not convey any information regarding the

value of Q(w) for any weB,wé{w,,....,w, ).In such
problems ,does it still make sensé@ to store some in-
formation in H_ (l.e.,to let T >0) ? The answer i
of course neqa‘hve if the envi?onment is deterministic,
Indeed,if the environment is §,then it i{s clear that
"_I=Q(Wn) wpl for all n.The only informaticn that

needs to be stored is (Wn,Yn) and it i8 not neces-

sary to sample the basepoint (thus,let B =0 for all i
Further,if Z =-1,the best one can do is to generate
W; with dPltributlon function G in B.Therefore,if the

environment is deterministic and defines an exhaus-
tive search problem,we can let ¢ =1 and Z =1 for all
n.In the random search llteratute,"thls methgd is cal-
led blind search [1].Assume next that the environment
is deterministic but that Q and B do not define an
exhaustive search problem,e.g. because B=R™ and Q
is known to be continuous.In that case it can be
helpful to let Tn>0.If zn=—l,Tn_l=0 and Q is conti-

nuous,ocne can let W; be gaussian with variance oi

and mean Wn_ for the purpose of local hill-climbing

1
(this method is referred to as creeping random search
{11).1f Tn_1>0,the distribution of W; may be a mix-

ture of gaussian distributions with centers at wn_
and W1 15icT |,
i n-1

climb separate local hills .The same strategies can
be used if the environment i{s noisy,i.e.not §.But for
noisy environments,even in case Q and B define an
exhaustive search problem,it makes sense to store
all the past observations in Hn on account of the fact

that the Y;l-l are only noisy estimates ofthe Q(W;H)

e, T
n-1 .
instance define W* as follows.Let M>0 be fixed and
consider those wn-1 that correspond to the M
lowest values among the Y{“l ,ISISTn_l.Then let

1
in order to simultaneously

for i=1,. .In such case,if Zn=-1,one could for

W* have a uniform distribution over those W?'I.The
1
designer can for instance eliminate the other (w;" ,

Y{H,N;H) from H,_; so that T <M for all n.

A note is in order here concerning the merging
operation in (9).If Tn-l is large and one goes through

the trouble of storing all or most of the past observa-
tions,it would be very inconsistent if no merging was
used in (9).Further,if merging is used in (9)1,1t is

wise to let W; be equal to one of the W;1 ,1<isT X
n-.

with positive probability,thus increasing the expe-

riences of the W{"l on the long run.If T is small

or zero,one can of course as well do without the mer-
ging in (9).This would simplify the algorithm consi-
derabl * *'-*= * Y, =y,
erably because (Wn Yn Nn) (wn Yn Nl:) and Nn )‘n If

Tn_lso for all n,then it is easy to see that the only

thing to be memorized is (W ,Yn_l).The decision

rule (10-11) reduces to n-1
W+, Y*) (fYyrcY
(wn'Yn) = (Wn nY ) r::ther‘:f\:llse (12)
n-1'"n-1 *

In that case the algorithm reduces to the well~known
random optimization algorithm of Matyas {20].

IV.Theorem Of Convergence
Theorem 1 : Let B be a closed set from R™ and let &
be a random environment with search domain B.Let Q
be a Borel measurable mapping from B to R and let G
be an arbitrary distribution function with support in B
Let {"n],{ﬂn] and {yn} be number sequences from

o =
[0,1]) such that n+an+yn 1 for all n.Let {An] be a
POREE be

a sequence of random vectors from Rm whose distri-
bution is determined by the procedure described in
section III,If there exists a sequence {b } of integers
such that n

sequence of positive integers and let Wl,W

bo‘bls"’ (13)
osbnSn for atl n, (14)
n
i=b_,
n?®® n
b a‘ > e, (16)
i=b_,

n

and the environment {s
either » 2 n
or 3 and xbn/cn logn-+ »

_O_r_et for t22 and in addition to the latter con-
t t‘l n .
dition, nc“/Xb - )

na (17)
where ¢ =n-b +1 and 7}, =Min ()
n n b

b,,"‘b+1""”‘n)'th°"
n

Max (Q(Wn).qmm) +q 10 probability. (18) ,

The convergence in (18) is with probability one if the
conditions (15-17) are replaced by (15'-17'):

n n

£ B /logn 4 @, (159
1=bn,

n n

T al/logn “+ @, (16')

i=b_,
and the environment is either $ or § and
Xb /crz‘ log n 5 w,0or_& for t22 and in addition to the

g t-1
latler condition, T nc:l/xb < ®. (17Y)
n=1, n

Proof: Theorem 1 18 proved in the Appendix.
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In some applications one is more interested in
the asymptotic behavior of the expected values of the
measurements,i.e, Q(W‘;),n=1,2,... .The following
theorem holds true,

Theorem 2:Let B be a closed set from R™ and let e
be a random environment with search domain B.Let Q
be a Borel measurable mapping from B to R and let G
be an arbitrary distribution function with support in B.
Let {an},{an} and {yn} be number sequences from
[0,1] such that an+5n+yn=1 for all n.Let {x } be a
sequence of positive integers and let WI*".W1 Wz,

. be a sequence of random vectors from R™ whose
distribution is determined by the procedure described
in section III If

n

Max(Q(Wn) ,qmm) -+ qmin in probability (19)
and B, (20)
then n

Max(Q(Wl:),qmm) -+ qmin in probability. (21)
Proof: Let ¢>0 be arbitrary and note that
{Q(W*)>q +c]c{Q(W )>q mi +c}U{Zn¥0} ,80 that
P{Q(W*)>q +c]sP{Q(W m+c}+(l—5n).'1'heorem

2 follows from this inequality,(lg) and (20).

Remark :It turns out that the convergence in probabi-
lity of Q(W;),as in (21),normally {s the strongest

possible mode of convergence.lndeed,if y =0 for all
n,it is not always possible to insure that Q(wW*)
converges wpl.This curious but not entirely surp?rlslng
result is formulated in Theorem 3.The counterexample
proving Theorem 3 is given in the Appendix.The
result in Theorem 3 is not absolute in the sense that
for special B and & it may be possible that Q(W )
and Q(W*) both tend to q wpl as n-+ow,

Theorem 3 : There exists a closed set B from RM,a
Borel measurable function Q from B to R,a determinis~
tic environment & and a distribution function G with
support in B such that for all sequences {an}.{Bn]

and {yn] from [0,1] with an+Bn=1 and y =0 and for
all sequences D‘n] of positive integers and for all

algorithms fitting the description of section III,it is
impossible that
Max (Q(W;),q

n

)Y+ q wpl.

min min

For deterministic environments,one can let b =1
in the conditions of Theorem 1,The conditions of
convergence then reduce to

o (-]

T ¢ =18 =a,

n=1, " p=1,7
By a slight change in the proof of the theorem,it can
be seen that the condltion Za == can be dropped
altogether,

The conditions of convergence in Theorem 1
look rather comphcated Let for instance o -A/n ,3 =

B/nBand A —Cn6 where @20,p20 and 620.If the en-
vironment ls Ct with t22,then (13- 17) hold- if

Max{«a,B)<Min(6/2,(s (t-1)-1)/t , 1) (22)
and (13-14,15'~17') hold {f
Max(a, B)<Min(6/2,(6(t-1)-2)/t , 1). (23)

If the environment is &, then (13-17) or (13-14,15'-
17') hola if

Max(«,)<Min(6/2,1). (24)
For this, it suffices that @®=P=0 and that §>0.The
proofs of the sufficiency of (22-24) are given in the
Appendix.

V.Conclustion

The theoretical properties of a large class
of random search algorithms for use in stochastic
optimization are discussed.To actually obtain practi-
cal algorithms,it is important to make the best use
of the freedom that is left to the designer,e.g.in
the choice of the sequences {an],{sn} and {xn],ln

the procedure for the generation of W* and in the
procedure for updating the memory co&ents H .As
for most random search techniques,the class nof
random environments to be allowed is very large.
This makes the algorithm suitable as a basic buil-
ding block for a widely applicable optimization pro-
gram in the computer library.

The designer has the option to use an al-
gorithm with a growing memory to reduce the cost
of optimization measured in terms of the number of
observations.It is pointed out how a growing memory
can be useful even in exhaustive (but stochastic)
optimization problems.In non-exhaustive search
problems,e.g.when B=R™ and Q 18 continuous ,other
procedures to extract information from the past ob-
servations should be studied,For instance, further
research is incouraged in parametric and nonparame-
tric estimators of Q that use the data that are col-
lected during the search.

VI.Appendix
Lemma ] :Let Xl, ...,X )(l ...,X;‘ be iid random

variables with E{X }= 0 and E{X ]=02<a If S 2 Xl
n

and S'=¢% (X-X) then l=1'
n
i=1,
P{u {lIs, /klzc]}sﬁ 2P{|S'2k-1/2 |2¢/8)}
kzn

kzlog.n

2 g2

for all n and ¢>0 with n¢ >Ba .

Proof: Let uY denote the median of a random variable
Y.By P.Levy's symmetrization inequalit; and the
fact that if E{Y]}=0,then ]uY|$(ZE{Y 1))

P{ u {|s /k|2¢e}} <P{ U {|(S -u§ )k |2¢/2})
k2n I k IZ‘ (kzn I %( H%‘ |>-
+ P{ U [|u§(/k|2t/2]]s

2p{ U {ls /klze /2Pl u l2e2k) Y=o 210,
kan kan
The last term on tl}e right-hand side of this in-
equality is 0 if ne“/4>202, Arguing as in Loeve [21,
pp.252-253),we have for 2k~lensg2k,
s /n|=| (Sl'_l—Sz' w?/m+ S'zk_l/nl
Qe ' k"l
slsn szk_1 [/n+ |szk_1 |/2
' k \ k
sZ(lSn szk_l /72" + lszk_l |72%).

By another application of Levy's symmetrization in-

equality, P{ U{IS /ilze/2})
jzn
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2k
< T (P{V

Zkzn =2

e, (21578010 1252 e/a1)

+ P{Z]S'kll/Z 2¢/4})
2

< T@P(]s' -s', /22 e Wpgls 125268
2 2 2

272n

=3 IP{[s, |2 k2 e8],

kzlc.)g2 2

Lemma 2 :Let X ..,X be iid random variables with

1’
E{x }=0 and E{IX I'}<L<= for some ta2, then,

P[ U {IS l/kzc}}sc /ct t, C,e L
for all n and ¢>0 with n¢2>8 Lz/
C,=24 (1+2/1'L8",C

1/(32 etizet) L27Y,
Proof : From lemma 1,an ?equalit ?f Fuk and Na-
gaev [22,pp.654] and E[X =g sL ,we have with

S'-—X1+...+X -X el e 2n

P{ u{ISkI/kzc]} 6

where

C,=12/(1-exp(-16 e?)) and C,y=

z P{| S 1 |/2%2 ¢ 8}

kzlogz
<6 1 2(1+2/1) L/((c/e) t2t k

kzlog,n + 2 exp(-2 2% ()2 /(t+2)0%)
<(C,/2¢'n 2 o4 "+c (1-exp(~ 1/15e2))
k=0, £ exp(- C3c 2k )
kzlog n 2
2
sc/‘tntl+( (}3"./9 O3ne )Cy(1-e -1/16e )
-Cyne
£ C /‘ n +C2 \ M
for all n wlth n¢2>8]l.2/t in view of e C'Jn' <o~ C38L
<o 118€% \ye used the fact thet for all a>1,b>1 and
K integer, T a -b sa~P /(l-a -b ).
k=K
Lemma 3:Let Xl,. . ,Xn be lid random variables with
E{X, }=0 and

E{e™1y < e" o*/2(1- Do ant 5 with (AL
and for some o020 and L20,then

P{ U {lSk/k|2¢}]sC4exp(-n¢2/028 o+16L4¢))

for all nkzgnd ¢ >0 with n¢2>8 oz,where C4-
12/(1-exp(-1/16(1+Le/8a2)) ).

Proof :It is easy to see that E{X ]=a2.Note also that
for all n,by Chebyshev's inequal)lty,

P{S fnze}sP{ZXlznc]‘G e o1
i=1
< exp(-Ane+m2o2/2(1- [A|L)) for all |a|L<lf

With )\L=€L/02(1+Lc/o ),wg obtain

P{S /n2¢} < exp(-n¢ /26%(1+¢L/a® ;
The same’bound is valid for P{S /ns ¢} ,s0 that by
a combination of bounds,

P{|S /nlze¢} s2exp(- ncz/Z(o +Le)).

2 2

By lemma 1 for all n with ne>8¢ P

P{ u{ls /k|z¢}}s12 £ exp(-2 K(e/8)2/2(0%+L o))

kan kzlogz
<12 exp(-n(ye) /2(3 +L,_.,g))/(1 -e ~-n(e/8) /Z(o +Lr/8&

£ C, exp(-ne /(128 oz+16Lc)).

Proof of theorem 1:Let ¢>0 be arbitrary and let {b_}
be a sequence of integers satisfying (13-17).if ¢ ="
n-b +1,and W is a random vector with dlstributlorrlx
function G,then we make the following crucial obser-
vation where we use I[ } to denote the indicator of
an event,

QW )>q

n
+c]:[ zI =0)

min {Z 0}

u{zx[z1 O]zlln[ U {IY*—o(w*) 1> e/4c )
u{lrlb(Q(VVl*")>qm1 (25)

n,
First, it is clear that

n+¢/2]} ].

P{:bI{Z 0}—0]sT\’(1 B) < exp(- 1Eba) (26)

n nl
Also, n ™ n
P{n [QWH>q +¢/2}JSP{ZI{Z -1 sz a/2]
i=b }
nl l '
n
+P{):I{z 1) z @/2; n [Q(W*)>q ate/2l)
1=b i=b
2 a/z
<(P{QW)>a_ rer2)n
+P{£(I[Z l}-0)/c <- i}iba/ZC }.
n,
Using Bennett's 1nequality (see,e.g. [22])) and the
fact that by the definition of qmm,P{Q(W)>qmm+_e/2}

=1-9 for some €>0,the right hand side of the last
ineauality {s upper bounded by
n

& /2 n
{1-8)° ™+ exp(-c (): °/2c o /(Zo+ z a/ch))
1=b ’ 1=b
where 2 n n
£°(1 G)/c < za/c .
b , n i=b n

Therefore, we can conclude t.hat

P{n {QwWa>q int¢/21)
isb ,

sexp( (9/2)): °)+ exp(- 2 °/10)

1=b i=b ,
n

(27)

Next, n

P{u {IY*-Q(W‘) |>¢/4¢ 1)

n
sP{u u {IY(W* 0H- Q(W*)|>c/4o 1}
=1, Fxb .

<n sup P{ U {]¥(w, 9-Qw) |>¢/4c 1)

where Y(w, ) —é Y/t and the Y l<isn, are iid ran-
1—1
dom variables with distribution function F ., Note that
we used the fact that the merging in (9)W is consis-
tently used and that for all n,the W _ and W;,lsiﬂ‘ ,
are pairwise unequal, n
From lemmas 2 and 3 we know that for all n lar-
ge enough
sup P_I{ u{lY(w H-Qw)|>e/4c }} =
weB b
n
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40 if the environment is
n- ch /'):t 1

mentnis e: (t=2) and X‘b /c zK4

Ksexp( KB)‘ /(lSc +l%c ) 1f the environ-

2
ment is J and xb /cn zl%.

and where Kl' e

+ Ke KGan/ °n it the environ-

,l% are positive constants that de-

pend upon € and the parameters of the environment,
e.g.Land t if & is &, with parameter L ,or L and ¢
if the environment is = J.LlLet d=Min{(1/10; 6/2) so
that ,after collecting bounds and resybstitution in
(25) ,we obtain ,for all n large enough

P{QW)>q +e} s exp(- 3 B)+ Zexp(-df a)
H’n’ 1=,
+na, (za)

Clearly, (28) and (13-17) imply (18).The second part
of the theorem follows from (28),(15'-17') and the
Borel-Cantelli lemma [21}.Indeed,it is easy to check
that for all ¢>0,

z P{Q(W )>q
n=1,
by a repeated use of the fact that for any sequence
{a } of nonnegative real numbers and any r>0,

+e]<-

n

a /logn + = {f and only if z ne e o .This conclu-
des the proof of theorem 1. n=1,

Proof of theorem 3. Let B—{w w.}.let Q(w )=0, Q(w)
=1 and let the environment be deg rministic. Let G

put mass 1/2 each at W and w,- Let yn-o for all n

and consider the algorithm described in section III
with A =1 (this i{s without loss of generality since
the environment is determigistic).Theorem 3 is proved
if we can show that

(1) 1f ; ==,

,then P{ U {Q(W*)>§}]=1 for alln

n=1, kzn
(11) If ): a <= ,then P{Q(W )>i]z§exp(- ): a)
n=1, n n=l,
for all n,

For (1),w1ih arbitrary n,we argue as follows.Since
L g e for all n,

M R( U QWDAE1) 2 PLU 1 Wi, 1)
—1 P{ ﬂ[{z =0ju{z, = 1 W*—WO}}}
=1- T[‘(P{z 0}+p{z =1}/2) > 1- TT(pkmk/z)
=1- TT'(l 0 /2) 21 -exp(- }:ak/Z)

k=2n k=n,

If ): an-O then,with probability dne,W Wl W2
n=l,
so that for all n, P{Q(Wn)>§}=P{Q(WO)>§}=}.Next,let

z o= A<e,Then,
nel, P[Q(W)>%]2P{Q(W)>t} P{n{Q(W*) 11)

23PN ((Z,=1 W*=w1]u{Z S
k 1,

—iﬂ'(sk+ /2) =

371(-a /2)
k=1, IEI, %
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z-ie‘A
where we used the inequality l-uzexp(-u/(1-u)) for
0=u<1,This proves (ii).Next,

P{Q(W?l)>§} ziinP{Q(Wn_1

n n
23T exp(-a /(2-a. ) 24 11 e %
k=1,exp ak ak : i k=l,e

1312 8_e™y2
lim inf P{QW*)>3] 202

because the summability of the °’

and

implies that o 40

and B 51 This and (i) show that it is lmposslble

n
*
that Q(W ) 9 i wpl,

Proof of the sufficiency of (22-24) :We display a se-
quence {cn] with cn=n—bn+l for all n .such that

(13-17) or {13-14,15'-17") hold.Let cn~nY for some
O<y<l.Because B<l and o<l we have that
n
Y-8

za1~nY and):s~n .
1=bn, 1=b

Also, xb /czlogn ~n Y/loqn

and
nc’i /)\bt 1 levt-s(t-1)

If (22) holds,then we can find a O<y <l such that
(13-17) is satisfied for type ¢  environments with
t=2,.8Similarly,(24) is sufficient for (13~17) and for
{(15'-17')for type § environments.Finally,(23) {8 suf-
ficlent for (13-14,15'-17') for type et environments.
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