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A Class of Optimal Performance Directed Probabilistic
Automata

LUC P. DEVROYE

Abstract-A new type of probabilistic automaton is presented which is
optimal, converges quickly, and is flexible in the sense that several
characteristics of the unknown random environment can be learned and
incorporated in the scheme without affecting the convergence. Emphasis
is on the proof of convergence and a theoretical and experimental
comparison with other strategy selection procedures.

I. PROBLEM FORMULATION

The problem of the sequential selection of the best of N
strategies IX" i = 1,.. .,N, in a stationary and finite random
environment is considered. A finite random environm~nt If is a
finite collection of distribution functions on ~l, let us say
{FI'.. .,FN}. The environment is unknown, i.e., no information
whatsoever is available concerning the distribution functions F"
i = 1,.. .,N. At each iteration (epoch) n, one strategy Sn E
{IX1,.. .,IXN} is picked and applied to the unknown random en-
vironment which responds with a number Yn called the loss or
the response of the environment.

Given that Sn = IX" Yn is a random variable distributed at yi
where yi has the distribution function F,( .) in (;Rl and the mean

Ci ~ f Y dFi(y) = E{Y'} = E{Yn I Sn = IX,}, i = 1,.. .,N,

(1)

where c, is the expected loss (or risk) with strategy IXi' Throughout
this paper, it is further assumed that the variances (2) are finite:

u; = f (y -c,f dFi(y) = E{(Y' -c,f}

'.
= E{(Yn -C,)2 I Sn = IX,}

~ U2 < 00, i = 1,.. .,N. (2)
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To describe the strategy selection process, we assqme that there Denote the N-dimensional column vectors corresPOnding'~: ~
exists a probability distribution on {~1'.. .'~N}' let us say these quantities by Rn, Ln, Gn, Dn' and Vn. Further, ~H is the
Pn = (Pl.n,.. .,PN.n) so that best estimate of the optimal strategy at epoch n and is defined as

N follows. Let r n be thc set of integers j for which Gj,n =
1~1 Pl,n = I, n = 1,2,... (3) mini {GI,n}' Choose Hn at random from r n' Clearly,

Pl,n = P{Sn = al}, i = I,".,N, n = 1,2,..,. (4) GH",n = min {GI,n} HnErn S {I'..',N}. (8)
I

The selection probability vector Pn is usually a random vector, ..0 ..
The a priori expected loss at epoch n is denoted by M and is To simplify our notation, let In denote the N-dimensional
defined by (5): n column vector with components Jl,n = I{Hn = i}. The random

variables in whose asymptotical behavior we are interested are

M = E {r: I P } = ~ E { yl }p{S = IP } = ~ n Mn (5), which is the loss to be expected at epoch n + I, and
n n n i.J n al n i.J £1 nCI. Z h o h . h 0k . d .

h1=1' 1=1' n=CH,WIC 1St ens associate Wit an ." "
(5) A probability vector is, in our context, an N-dimensional

column vector from [O,I]N whose components sum to I. Let
A set of rules for computing Pn+l given (Pj,Sj,Yj), j = I,.. .,n, B = (B ...B )T be an arbitrary probability vector

iscalled.aprobabilistica~tomaton [~], [3],.[5]-[16], [19]-[:1]. a~(0,11';nd 'le;'{Pn}':'=l be a random sequence froD}. [0,1]
In particular, we are mterested m optimal automata, I.e., satisfying L",= P = 00 with probability one and lim 8 = 0
automata which insure that with probabili~y nl. Then relation (9) defines a PDP A n (per-

lim E{Mn} = d = min {Cl,.' .,CN}. (6) formance directed probabilistic automaton):
n

.PI n+ 1 = I {i = n + I}, 0 S n S N -IFor general enVIronments, none of the known probabilistic '

(stochastic) automata with a variable structure (SA VS) is op- (a )timal. To describe the properties of some of the SA VS, P n+ 1 = Pn N 1 + (I -a)Bn + (I -Pn)Jn,

Viswanathan and Narendra [11]- [12] introduced the concept
of 8-optimality. The underlying idea is the following: For all N S n (9)
8 > 0, a set of rules for computing P n+ 1 can be found within the h 1 = (I I ... I)TI f h 0 d od 0 h h were" , .c ass 0 stoc astlC automata un er consl eration suc t at Th d Ol .f h J: P d IIN 1 b-0 e rea er can easl y ven y t at an .are prolImn sup E {Mn} < d + 8. For most of the classes of automata, 0 .0 0 0 n, n' 0
th t f ru1 0 I t 1 d t . d b h h . f ability vectors. Bn IS to be picked m such a way that the algorIthm

e se 0 es IS comp e eye ermme y t e c olce 0 one .. 11" ( d o I h °gh ft pel Jorms we eog., ISp ays a I rate 0 ,convergence or
parame er. I 11 h 0 al ° h 0

f hIf Y' {OI } " all . t o al °t ed .. b d samp es ate strategies so as to equ lze t e vanances 0 t eE , lor I, 8-0p 1m I Y was prov lor a roa o. 0
class of SAYS [3] [II] [12] [19]-[20]. The most romisin estimates G"on, 1= 1,0. .,N, etco). Weonow give a few examples,

0 "'. I P 1 g some of which gave excellent experimental results. Let (In =

experImental results for general environments (Y E R for all {G } (J 0 d b 0 d I {(J }'" be. I N) b 0 d b Sh 0 d N d [3] b maxi In' > an >, an et n n=l a sequenceI = ,..., were 0 tame y aplro an aren ra , ut f [0 ' ] Defi f 0 I N th d o bl Ch 0 d .0 I Th h .o. rom,oo .ne or I = ,..', e ran om vana es In:t elr proce ure IS not optima. e stoc astic approximation '

type automaton of Fu and Nikolic [10] is proved to be optimal, i) C = Ibut one of the conditions of convergence is not a priori control- I,n

lable. Experimental results show that their algorithm behaves ii) Cl,n = (V',n. L"n-l)9

very simoilarly to 8-0ptimal automata, iii) C"n = (Gn -G",,)9
We will present a new class of probabilistic automata that IS

optimal, converges quickly, and is flexible in the sense that several iv) C',n = I + b(1 -GI,n)LI,n

characteristics of the unknown environment can be learned. This )" = (b + L J-: -l(G -G )2)-9" (10)information can be incorporated in the scheme without affecting v I,n I,n I,n I,n H".n 0

the convergence. Further, in each case let

:.. II, ANEW CLASS OF ALGORITHMS [ N ] -1 B -C ~C
~..I,n -',n i.J j,n Let Sn E {al,.. .,aN} be the strategy selected at epoch n and j=l

:: Yn be the corresponding observed losso We will need the following .0 o.
:; random variables which are defined for all i = I ...N: so that Bn IS a probability vector. If I) IS chosen, mformation IS

, , voluntarilY.t:ejected and uniform sampling is favored. Therefore,
: n i) is only useful in hi~ equal noise problems, i.e., all u? are
r R"n = I {Sn = al} Ll,n = t~l R"t approximately equal and much larger than max',j Icl -Cj I.

Choice ii) results in a higher sampling rate for relatively less.I n I n
G"n = -~ YtR"t D',n = -~ Yt2 R, t sampled strategies (i.e., strategies with high estimated variance

L"n t= 1 L"n t= l' V"n relative to the sample size L",,). Choice iii) favors "promis-

J-: = D -G 2 (7) ing" (low G",,) strategies over other strategieso The parameter (J
I,n ',n I,n controls the value of the largest B, n' Choice iv) is very similar to

where I {. } is the indicator function of the event {.}. choice iii) and was first suggested by Meerkov [13]. It is only
All these quantities can be computed recursively. L',n counts applicable if yl E [0,1] for all i and will be discussed later. The

the number of times strategy a, was applied to the environment last choice combines the features of ii) and iii) and made al-
up to time n. G"n is the estimate at epoch n of c, = E {yl}. D',n gorithm (9) converge quickly in most of the test examples (for
estimates E {(ylf}, and Vi,n is the nth epoch estimate of u? particular choices of {(In}':'= 1). It is clear that this list (10) is not(. 

,:45~\!
~
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exhaustive and that, regarding the selection of Bn, the designer which holds for all n large enough in view of P{ C I} = 1 and
is only limited by his imagination and experience. Zn -+ d with probability 1. Thus Mn -+ d with probability I,

Besides this class of PDPA, another SA VS will also be dealt and because d .$ Mn .$ M < 00, E {Mn} -+ d as well. There-
with in this paper. Let {Cn}:'=O and {On}:'=O be random sequences fore, (14) implies (15)-(17), and we will now prove that Zn -+ d
from [0,1] satisfying (11): with probability 1. Again, pick e > 0 and b" > 0 arbitrarily. Then

f on = 00, with probability 1 P { u [Zk > d + 8]
}n=O k...n

lim Cn = I, with probability 1 { U UN [I I e]}n .$ P Gt.k -Ct > -

k...nl=l 2
lim on = 0, with probability 1. (11)

n N { e
}.$ L P U IGI k -cil > -

Then we define this SAVS by 1=1 k...n' 2

Po = ~. 1 .$ f P { u [ IGtok -cil > ~] , Ll,n ~ RO
}N 1=1 k...n 2.

Pn+1 = Pn + Cn'[(1 -on)!n + ~ .1 -Pn ] , n ~ 0, (12) + f P{Llon < Ro}
N 1=1

Algorithm (12) coincides in form with the algorithm of Fu and ~ 20'( ~ P{L R }.k I. [ ] $ "" + "" Ion < 0
Nl 0 lC 10 lor Un = O. 1=1 (eI2)2. Ro 1=1

III. PROOF OF CoNVERGENCE" < 0/2 + f P{LI n < Ro} (18)
Both classes of algorithms satisfy the following requirements. 1=1 '

There exist random sequences P1,n,.' "PN,n and Yn, n = 1,2,... where we used the Hajek-Renyi inequality [24] (in view of the
with limn Yn = 1 with probability I, independence of Yl,Y2,'.') and where the constant Ro is chosen

00 such that
L Pion = 00

16 Nn=1 ~ 2
Ro > -."" 0'1 .(19)with probability 1 for all i = 1,0. .,Nand oe2 t=1 .

Pion ~ Pl,n, i = 1". .,N, n = 1,2,... Fro~ the sampling procedure we see that there exist random
variables Li.n. with

PHn~Yn' n=I,2, (13)ftO n

For all automata which satisfy the foregoing condition in en- Lion ~ LI,n. = L Zto)
vironments satisfying requirements (1) and (2), (14)-(17) hold: )= 1

Z -+ d with probability 1 as n -+ 00 (14) where Z"l'.. ',Zlon are independent binary valued random
n , variables with P {Zlo) = I} = PloJ- Notice that

E {Zn} -+ d, as n -+ 00 (15)
n

Mn -.d, with probability 1 as n -.00 (16) E {LI,n.} = L PI,)
)=1

E{Mn} -.d, as n -.00 (17) and
nRemark: Equation (13) implies that limn-+oo Pl,n = 0 with 0'2{LI n.} .$ L PtoJ-

probability 1 for i = 1,2,.. .,N. ' )=1

Proof: Let C 1 denote the event [limn Yn = 1] and For all n sufficiently large, i.eo, such that E {LI,n.} is greater than

-N [~ P - ] 2Ro and greater than 8Nlo, we obtain by means of Chebyshev's
C2 -n "" I n -00 .. I.1=1 n=1 0 mequa Ity:

We know that P{ C 1 n C2} = 1. Assume first that Zn -.d with P{LI,n < Ro} .$ P{LI,n. -E {Lt,n.} < Ro -E {Lion.} } I
probability 1 as n -.00. Because d .$ CI .$ M < 00 for all
i = 1". .,N, E{Zn} -.d follows. Next, pick 8 > 0 and 0 > 0, .$ P{Llon. -E{Lt.n.} < -E{Llon.}/2}

arbitrarily. We have 0'2{L .
}< Ion

P { u [ f Pl,kCI > d + e]} -(E{Llon./2})2
k...n 1=1 1. ( n )-

< 4 L Pt) < 0/2N. (20).$ P { u [Yk' Zk + (1 -Yk) 0 M > d + e ]} -J= 1 0

k...n

{ [ 8
]} { [ e ]} Collecting bounds gives that for all n sufficiently large,

.$ P U Zk > d + -+ P U 1 -Yk > -
k...n 2 k...n 2M P { u [Zk > d + e] } < 0,

{ [ 8]} 0 k...n
<P Z >d+- +-<0-kVn k 2 2 -which completes the proof.
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Fig. I, Average perfomlance CI versus «I'

It is worth mentioning that (14}-(17) are still true if E{IY'\} < V, CoMPARISON WITH OTHER METHODS
~, i = 1,,: ",N,. instead of (2), In the proof, observe that the Historically, automata were first studied for use in 0 -1 '
first probability In (18) tends to 0 as n --00 by the strong law of random e . onm t (. Y ' E {O I } " 11') E 11[ ] ..., nvlr en s I,e., , lor a I. xce ent surveys

large numbers 24 for sums pf lid random varIables, given the of stochast' a to t 'th . bl t t ..'
h...2 IC U ma a WI a varIa e s ruc ure lor use In suc

existence ~f the first moment. NOtIC~, however, that If 0", = 00 environments can be found in [2]-[4]. As a rule, Pn+l depends
for some IE {1,.. .,N}, then one will no longer be able to use only upon P S a d v P h th t t . Ith t .

t D d If 7 n, n' n ~ n' er aps e mos represen atlve a-

e es Ima ors n an ,. n ( ), . hm .. h. 1 f ' h L . gont lor t IS C ass 0 automata IS t e R-l (linear reward-

IV. EpSILON-OP1lMALITY inaction) scheme (22):

,..1 With the following fixed-parameter algorithm (21), Po = N-1 ,1; Pn+1 = Pn + Po(1 -Yn)(Rn -P.),

': \. Po = N-1 .1 for n ~ 0, Po E (0,1): (22)

Pn+l = PoN-1 .1 + (1 -Po)Jn, for n ~ 0 (21) This algor.ithm i~ e-op~imal [11], [19], [20]: an~ its main
advantage IS that It requires no performance estimation through

where Po E (0,1], there is at every instant a positive probability some auxiliary variables as Gn. The deceleration algorithm of
of selecting each strategy. Hence this scheme (or similar more Meerkov [13] is a completely different type of algorithm for
complicated ones) can be used in nonstationary environments, 0 -1 environments. In fact, his algorithm is exactly of the form
provided the performance is not evaluated by simple averaging (9) witb ch?ice (10, iv) for Bn, where a = 0 and Pn = 1 for all n,
but by a finite memory device such as an exponential filter, From However, he proves only convergence in probability, and ex-
the previous theorem we know that since P{C2} = 1; limn Zn = d periments show that for any choice of the parameter b, his
with probability one. Thus' procedure converges extremely slowly, If Y' E [0,1] for all i (or

if Y' E [A,B] for all i and A,B are known, we can consider
lim E {M } = d + P .N-1 .f (c -d), Y' -A/B -A), (22) can still be used, but convergence or even

n n 0 '=1' e-optimality are not yet established (see [7], [14]), If A and B

To achieve e-optimality, it suffices to take are unknown, Viswanathan proposes estimation of A and B byl
An apd Bn as the search proceeds [7] and the use of Yn* =

N-1 11 d Yn -An/Bn -An in (22). As an example of a SAYS which is
Po < e/ '~1 (c, -). not even e-optimal butmefely "expedient" [16], [21] (fo, the

---
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E{P6(N)}
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"
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I

60~0.001
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0.8 ../
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I ,i
I :'
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I ./

I /0.3 /." N

-11000 4000

Fig. 2. E{P6(N)} versus N for stochastic automata with variable structure.

latest definition, see [5]), we cite the LR-P (linear-reward- should be pointed out that for most of the environments an
penalty) automaton of Fu and Maclaren [4], [8], [15]: order preserving transformation h(Y) exists. For instance, let Y'

-1 .be Gaussian with mean c, and nonzero variance a2, then for any
Po = N .1, ).eR1:h(Y) = I{Y > )'}isorderpreserving.Ifnoassumption~

[ 1": ] can be made about the environment, one really needs a "memory"
P"+l = P" + Po R,,(l -Y,,) + (1- R,,)N:='!- P", for past measurements (such asG", etc.). The solutions present ed

by various authors all had the same characteristic, i.e., P"+l
for n ~ 0, Po e (0,1). (23) depends upon P" and I". Further, e-optimality is the best that

can be said about the asymptotical behavior of some of the
It is shown in [4], [8], [IS] that for {0,1] environments, SAYS. Moreover, due to the fixed parameter Po (see (22) and

( N ) -1 (23)), there exists a positive probability that M" ++ d as n -+ 00
lim E{P"",} = C,,-l L C,-l (because of "absorption" in one of the ~tates al," ',aN of the
" ,= 1 automaton), although this probability can be made arbitrarily

so that asymptotic optimality is, in general, excluded. small by decreasing Po. In general environments, very high rates
If Y' e ( -00, + 00) for all i, one can try to find some nonlinear of convergence can be observed with the LR-I type algorithm of

transformation, let us say g: (- 00, + 00) -+ [0,1] or h: (- 00, Shapiro and Narendra [3]:

+ 00) -+ {0,1} and use g(Y,,) or h(Y,,) in the schemes for 0 -1
or [0,1] environments. Ingeneral,however,suchtransformatio ns Po = N-1.1;P,,+1 = P" + Po(R"TJ")(/,, -P,,),
donotpreservetheorderinthec,;i.e.,ifc, = E{Y'} < E{yJ} =
cJ,thenitisdesiredthatc,* = E{g(Y')} < E{g(yJ)} = cJ*.It forn ~ o and Po e (0,1). (24)
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The main differences between the PDPA and the discusse~

E{P6(N)} algorithms (22)-(25) are the following. '
1 1) The bulk of the information is not carried by Pn but by 6n. '

Note that the same is true for algorithm (12) since Cn --1 with

probability 1 so that asymptotically, Pn+l ~ (1 -on)Jn +

onN-1 .1. As a consequence, the convergence properties of 6n

0 can be exploited to prove the with probability 1 convergence of
/ , the algorithms (9) and (12).

/// ",,"'i' 2) The second difference is the freedom in the design of a

v'-' technique (through Bn' see Section II).

0, ,-1
/1 VI. EXPERIMENTS

/ Consider the maximization problem of Narendra [3] with

(" / N = 10. Fig. 1 gives the plot of CI versus 1%1' yl is uniform on

0 1/ / [CI -2, CI + 2]. Note that 1%6 is the optimal strategy. Obviously,

",_.I' / the problem can be regarded as a minimization problem if Yn
", I is replaced by -y n' Figs. 2 and 3 depict multiple run estimates of

I E{P6,n} versus n for various techniques.

0, II In Fig. 2, the results are given for three SAYS:

II 1) the algorithm of Shapiro and Narendra (24) with Po = 0.01

I and 0.001 (the curves are averages of 47 runs),

/ 2) the stochastic approximation type algorithm of Fu and

0, I Nikolic (25) with Pn = Po(1 + O.OOln)-l and Po = 0.01,

I' 0.0033,0.002, and 0.001 (the curves are averages of 43
/ runs),

/ 3) the LR-I type automaton with adaptive An and Bn of

0, I Viswanathan and Narendra (Po was 0.0075). (See [7] for a

1/ detailed description).

II For all these algorithms there exists a nonoptimal asymptotic

0, N level for E{P6.n}, and this level can be brought arbitrarily close

2~00 4000 8000 16000 24000 to 1 by decreasing the value of Po at the expense of a slower rate

of convergence. Note also that the SA VS (23) of Maclaren and

Fu is not competitive at all in such high-noise situations; e.g.,

Fig. 3. E{P,,(N)} versus N for performance-directed probabilistic auto- if f: is replaced in (23) by (f: -2.7)/(7.6 -2.7) lim E {P 6 } =mata n n ' ,n

.0.121 follows.

The results with some of the PDPA are given in Fig. 3. They

The idea is to update Pn only if the selected strategy 8n was the show, in general, less sensitivity with respect to the choice of Po

right choice, i.e., 8n = I%Hn' The scheme behaves experimentally and behave asymptotically optimally. Curves 1, 2, and 3 are

in an e-optimal way but is not known to be e-optimal. In any 4O-run averages for algorithm (9) with

case, (24) is not optimal in the sense of (6). Fu and Nikolic [10]

proposed a stochastic approximation type of algorithm with Pn = min { I; Po

}varying parameter: (1 + O.OOln)

Po = N-1 .1; Pn+l = Pn + Pn(Jn -Pn), and Po = 0.5, 1.0, and 1.5, respectively. Bn is constructed with

the aid of (10, i). Note that the gradient of the curves even for

for n ~ 0 and {Pn}~O C [0,1]. (25) n = 24000 is still very steep. Curve 4 is a ten-run average for

algorithm (9) with the same Pn and Po = 0.1. Bn is constructed

They prove that if a2 < 00 and Cl < C2 < ...< CN, then with the aid of the more complex choice (10, v) for CI,n,

P1,n --1 with probability 1, provided the sequence {Pn}:'=O satis- i = 1," .,N. We took a = 0.005, b = 1.0, (}n = Pn-l. The

fies: initial rate of convergence for the PDPA is slower than the rate

L(X) P - L(X) P 2 for some SA VS, but this phenomenon almost inevitably occurs

-00 <00 h . 11 . 1 d '

hn=l n n=l n W en asymptotlca y optIma systems are compare WIt non-

and optimal systems. Note further that the main field of application

of the PDPA (9) (10, v) is where the on-line estimation of a?,

(X). .i = 1," .,N, can payoff, i.e., in much more irregular noise
n~l PnP{Hn = II Yl," ',Yn-l} < 00, for all 1= 2,.. .,N. situations than the one of the test example. Curve 5 in Fig. 3 is

a 50-run average with the deceleration algorithm of Meerkov

Unfortunately, this latter condition is difficult to check in ad- (i.e., algorithm (9), (10, iv) with a = 0, Pn = 1 for all n). For

vance, In fact, it is not hard to see that it is a very strict con- all b > 5, E {P6,n} was below 0.3 even after 24000 units of time.

dition. Experiments with several environments have shown that For small b, the behavior was as in Fig. 3, curve 5 (where b = 1).

the algorithm behaves e-optimally, much like the LR-I algorithm Yn was replaced by Yn* = I{Yn > 5.18} which, in this example

(24), is an order-preserving transformation.
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VII. CoNCLUSION

A new type of automata is developed for general environments
(yiE (- 00, + 00) for all i), differing from stochastic automata
with a variable structure in that the selection probabilities are
not adaptive but depend directly on some estimated parameters.
One of the advantages of the PDPA is that with probability 1
convergence is insured for all the random variables of special
interest. Furthermore, the POP A is remarkably flexible regarding
learning some parameters of the environment and introducing
this learned information in the scheme. Examples are given of
mean and variance estimators as well.

The asymptotic optimality of the scheme was proved and can
be extended without too much effort towards strategy selection
problems with a countably infinite number of strategies. In
addition, it is indicated how the POPA can be modified for use
in nonstationary environments. Finally, some POPA are com-
pared both theoretically and experimentally with most of the
well-known SA VS. -
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