SIAM J. APPL. MATH. © 1986 Society for Industrial and Applied Mathematics
Vol. 46, No. 4, August 1986 012

AN AUTOMATIC METHOD FOR GENERATING RANDOM
VARIATES WITH A GIVEN CHARACTERISTIC FUNCTION*

LUC DEVROYEfY

Abstract. An automatic method is developed for the computer generation of random variables with a
characteristic function satisfying certain regularity conditions. The method is based upon a generalization
of the rejection method and exploits the duality between densities and their Fourier transforms. It takes
finite time almost surely, does not use approximations or inversions, and does not require explicit knowledge
of the characteristic function (only its computability is assumed—hence the adjective “automatic’). As a
by-product, we show how the sum of n independent random variables with common density f can be
generated in time essentially independent of n, at least when its characteristic function satisfies the above
mentioned regularity conditions.

Key words. random number generation, characteristic functions, rejection method, expected time com-
plexity, probability inequalities, stable distribution, simulation, convexity, Polya’s criterion, Fourier analysis

AMS(MOS) subject classification. Primary 65C10

Computing Reviews categories. CR 8.1, 5.5, 5.25

1. Introduction. We are given a characteristic function ¢(¢), t € R, for a real-valued
random variable X, and are asked to generate a random variate X on a computer,
assuming that this computer can (i) produce an i.i.d. (independent identically dis-
tributed) sequence of uniform [0, 1] random variables U,, U,,- - -; and (ii) and
manipulate real numbers. Both (i) and (ii) are unrealistic assumptions that we will not
try to defend. The methods outlined below are exact if we are willing to accept (i)
and (ii).

To get a feeling for the problem, we consider the simplest approach first: if F is
the distribution function of X, then the solution X of F(X)= U, has distribution
function F. F itself can be obtained from ¢ by standard inversion techniques (see
e.g. Kawata (1972, pp. 128-131)). If we assume that all computer operations (+, —,
X, /, move, compare, truncate, log, exp, sin, cos, power) take a constant time regardless
of the value(s) of the operand(s), then integrals and infinite sums take infinite time,
so that the inversion of ¢ can be done with infinite precision only in infinite time. But
even if we could compute F from ¢ in a finite amount of time, the numerical solution
of F(X)= U, would require an infinite number of iterations, and thus eliminate this
method from contention.

An automatic method assumes only that ¢(¢) can be computed for all te R in
one unit of time or less, and that ¢ belongs to ®, a suitably general class of characteristic
functions. We should think of ¢ not as a function that is directly given to us, but
rather as a subprogram of sorts with unknown contents.

We should report here some attempts at obtaining algorithms for special classes
of characteristic functions. Devroye (1981) considered the class of all characteristic

* Received by the editors March 16, 1984, and in revised form August 18, 1985.

+ School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6. This research
was supported by the Mathematical Sciences Research Centre, the Australian National University, Canberra,
Australia (where the author carried out this work while on sabbatical leave), and the Natural Sciences and
Engineering Research Council of Canada under grant A3456.

698

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 699

functions with two derivatives and finite values for [|¢| and [|#"|. His method is
semi-automatic in that it takes a finite time if the inversion

fx)=@2m)™ J e”"¢(1) dt

can be done in one unit of time. For the class of Polya characteristic functions, the
author (1984) noted that the density is a mixture of densities of the form (sin x/x)?,
where the mixing distribution requires explicit knowledge of ¢ (and this violates our
definition of an automatic method). Yet, this approach is in a sense practical because
it leads to fast exact algorithms for symmetric stable distributions and Linnik-Lukacs
distributions (see § 3).

The principles outlined below for an automatic method are universal, and can be
used for many a class of characteristic functions ®. For readability, we will restrict
the discussion to a few simple but interesting classes. We will in particular study

M= {¢: ¢ is real, convex on [0,), and I |¢|<00}.

Note that ¢ is necessarily monotone on [0,), and that to each ¢ in M corresponds
a bounded continuous density on R (Feller (1966, p. 482)). M comprises quite a few
important distributions (such as the symmetric stable distribution; see also § 3), and
has great didactical value due to its simplicity.

Let us look at parametrized sub-classes of M, and let us call the parameter(s) 6
and the subclasses M,. Then M = U 4 M,, by assumption. The sub-classes are such that
it is easy to find a uniform dominating curve g, i.e., a function satisfying

sup f(x)=gq(x), xeR.

feMy
Here “f*’ stands for a density corresponding to a characteristic function in M, so that
the notation f€ M, is unambiguous. If we can manage to find an integrable g, and to
generate random variates from the density g,/ | g,, then the following rejection algorithm
would be valid:

Al. REPEAT Generate X with density g,/ g.
Generate an independent random variate U uniformly on [0, 1].
Compute f(X)=27)" [*_ cos (tX)d(t) dt.
UNTIL Ug,(X) =f(X).
EXIT with X.

For a general introduction to random variate generation and in particular to the
inversion and rejection methods, see e.g. Bratley, Fox and Schrage (1983) or Schmeiser
(1977). The rejection method is usually attributed to von Neumann (1951). For example,
the expected number of iterations in Al is | g: it is the same for all fe M,.
Unfortunately, the inversion cannot be done in a finite amount of time unless we
can find a way to avoid it. The principle that we will apply here is based upon the
observation that the decision Ug,(X)=f(X) does not require the exact computation
of f(X) (see §§ 4, 5, 6 and 8). In fact, the algorithm of § 6 never requires the computation
of f at any point! Because automatic methods for characteristic functions go to the
heart of the matter, i.e. the duality between characteristic functions and densities, we
need some tools to quantify this duality. This is done via inequalities in § 2. Thus, we
have inequalities relating the tail of ¢ to the smoothness of f, and relating the behavior
of ¢ near 0 to the tails of £ Unlike asymptotic theory in mathematical statistics, it

700 LUC DEVROYE

does not suffice to have inequalities with O(-) and o(-) terms hidden away. The
inequalities of § 2 will later be used in the constructive phase of our work.

To find dominating curves g, is relatively easy (see § 4). It is another matter to
verify whether the acceptance condition is satisfied. The trick is to rewrite f as an
integral with a positive integrand. This is basically why ¢ is required to be convex.
Once f is represented by such an integral (§ 5), it is relatively straightforward to
generalize the rejection algorithm so that f does not have to be computed exactly.
Instead, the positive integrand must be computed in every iteration of the algorithm
(88 3 and 6). The remainder of the paper deals with analysis and applications. Various
statements about the moments of the complexity are given in §§ 7 and 8. In § 9, we
show how for some classes of distributions, the sum of i.i.d. random variables can be
simulated in time essentially independent of n. This is the case when the sequence of
characteristic functions ¢, ¢, @°, ¢*, - - - of successive partial sums are all in the class
under consideration. This result is only possible because we have attraction to some
symmetric stable law.

We will require some knowledge of modern rejection algorithms and squeeze
steps. For careful explanations or insightful applications of the rejection and squeeze
principles, see e.g. Marsaglia (1977), Ahrens and Dieter (1974), Schmeiser and Lal
(1980), Best (1978) and Cheng and Feast (1980).

2. Inequalities for characteristic functions. The inequalities given here will help
us to construct good dominating curves gy, and to replace the inversion integral by a
finite series with random finite length. The main reference for the proofs not given
here is Kawata (1972). We will assume throughout this section that ¢ is real, although
most inequalities have versions that are generally applicable.

LemMA 2.1 (the Raikov-Wiener inequality, Raikov (1940), Wiener (1925)).

lp(t+h)—¢(1)|=v2(1-b(h)), theR
LEMMA 2.2 (the four-point inequality).
|6(1) = d(t+h) = p(t+u)+d(t+h+u) =VHI-GMWIT- @), thuek

Proof of Lemma 2.2. Use the fact that by Bochner’s theorem (Bochner (1959), see
Kawata (1972, pp. 376-377)), ¢ is nonnegative definite. 7
LEMMA 2.3. When ¢ € M, then for t, u, h=0, 0=A= ¢(t), where A is defined by
d(t)+d(t+u+h)—p(t+u)—p(t+h).
LeEMMA 2.4 (Kawata (1972, pp. 438-439)). If | |t|?| ¢ (t)| dt < oo for p = 0 integer, then
—7)P
FP(x) =%i j e P (1) dt.

w

Thus,

sup | otz @m [ilo ol e

LEMMA 2.5 (Van Bahr-Esseen type inequalities).
| 1-¢(0]= Gl 'E(XP)
where

i) C é%—"?, 1=r=2 (Van Bahr and Esseen (1965)).

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 701

(i) C,=2'"", o<r=2.

- T -
(iii) C'=——2I‘(r) Sin (7r/2)" 0<r=2 (whenfeM).
Proof of Lemma 2.5, parts (ii) and (iii). By definition of ¢,
1-¢(t)=2 J'oo (1—cos (xt))f(x) dx=4 J‘w sin? (Ez-t)f(x) dx

t
= E(|X|") sup 2 sin® (zz-)x“’

x>0

= E(|X]")|¢|" sup 2u~" sin’ (E)
u>0 2
But sin” (u/2) =min (1, u?/4), so that the supremum on the right-hand side of the
chain of inequalities is not greater than

sup min (2u~", u*~7/2)=2""
u>0

since the supremum of the last expression must necessarily occur at u=2. This
concludes the proof of (ii).
To show (iii), we start from the following expression:

E(le') =£(_:_T-_+___1}_sin (172—’.) J':’ l_tl?r(t) dt

(Chung (1974, pp. 158-159)). The integral in this expression is greater than (1—
@(t))/(r|t|") for all ¢ # 0 (by monotonicity of ¢). Now, (iii) follows when we note that
T'(r+1)=rI(r).

Remark 2.1. (About the constant C,.) Kawata (1972, p. 430) offers a seemingly
different expression for E(|X|") than the one used in the proof. It leads to the value

C =sin (Q=r)m/2)T(2—71)
1-r

in (iii). The equivalence between this C, and the one given in (iii) follows from the
well-known identity (see e.g. Whittaker and Watson (1927))

w

Fr(1—nrr(r)= re(0,1).

sin (7r)’
Which of the three inequalities in Lemma 2.6 is actually smallest depends upon r. The
value of C, in (iii) approaches 1 as r| 0, equals 7/2 at r =1, and increases to oo as r 2.

LEMMA 2.6. Let s be a nonnegative integer, and let E(|X|**) <oo (this is equivalent
to ¢ being 2s times differentiable at the origin, and in fact E(X*)=(—1)°¢?*(0), see
e.g. Kawata (1972, pp. 410-411). Then

1
sup x*f(x) =-— J lp(2)| dt.
x 277'
(Note. The right-hand side of this inequality is not necessarily finite.)

Proof of Lemma 2.6. With b= E(X?>°), x**f(x)/b is a density with characteristic
function (—1)*¢@*)(t)/b, and the result follows from Lemma 2.4.

702 LUC DEVROYE

LEMMA 2.7. Let ¢ be a nonnegative real-valued characteristic function with density
f, and let [¢ (t) dt <oo. Then f" exists everywhere and

sup 1°¢ (1) = I |-

Proof of Lemma 2.7. Apply Lemma 2.6 to the “density” ¢/{ ¢ (considered for
t€ R), which has “characteristic function” 27f/{ ¢ (where x is the running variable
now).

As an immediate corollary of Lemma 2.6, we have the following global bound
for f:

LEMMA 2.8. Let s be a positive integer, and assume that E(|X|**) <co. Then, if f is
the density of an absolutely integrable characteristic function ¢,

f(x)=(27) ™" min (J |#|, J |¢‘2‘>|/x,2S).

We note that the bound in Lemma 2.8 is integrable. An easy computation shows
that its integral is equal to

l 2S 1-1/2s @9)1/25
#23_1(j|¢|) (Jreen)™

Thus, this integral would be the expected number of iterations in the rejection Algorithm
Al when it is applied to densities f bounded as shown in Lemma 2.8. In § 8, we will
show how random variates with density g/f g (where g is the upper bound for f) can
be generated. Algorithm A1 would of course also be applicable to densities with smaller
values for [|¢| and [|¢©@)|. It is interesting to note that the efficiency of the algorithm
is good when f is small ({|4| measures a uniform bound for f), and has small tails
(J|¢*'| measures the smallness of the tails of f). As pointed out in Devroye (1981),
the integral shown above is relatively close to 1, and thus acceptable, in many important
cases. For example, for the Cauchy distribution, it is equal to 4/ .

3. A class of densities. The parametrization of the class M is done as follows: let
M, be the class of all densities f (with corresponding characteristic function ¢)
satisfying:

(i) ¢ is real, convex on [0,) and absolutely integrable. (Note that this implies

that ¢ is symmetric, nonnegative, and nonincreasing on [0,). Also, E(|X]) =.)

(ii)

sup [1|'"*¢(1) = 4,
t

where A>0 and a € (0, 1] are constants.

(iii)

=B
Sl':p |t'ﬁ ’

where B>0 and B € (0, 1] are constants.

(iv)

—l-r¢(t) dt=C <.
o

0

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 703

The fact that (i) implies E(|X|) =0 can be shown as follows. By Taylor’s series
expansion, we know that there exists a function z(x) with 0= z(x) = x, such that

1-¢(t)=2 Jw tz(x) sin (tz(x))f(x) dx

o

=2¢* J‘a/t 2%(x)f(x) dx+2 J

txf(x) dx
8/t

o

5/t

=26t I xf(x) dx+2t J xf(x) dx.
0 8/t

If | |x| f(x) dx <o, then, as t 0, the last term is o(t), and the first term ~ &t [|x|f(x) dx.

Thus,

J‘ x| £(x) dx= L 1im sup L—i(_tl
é 110 t

Since the given limit supremum is positive (by convexity), and & is arbitrary, we
conclude that | |x|f(x) dx cannot be finite.

Remark 3.1. We will refer to A, B, C, @ and B as the parameters of the class M,,
even though they are not parameters in the classical sense of the word, i.e. they do
not uniquely characterize one member in the class. All parameters must be known
before we can apply the algorithm to be given below: we must know to which M, our
f belongs. What is particularly bothersome is that C must be known exactly. For A
and B we can get away with upper bounds. The fact that we must know to which M,,
S belongs is considered by us as the major drawback of the algorithm that will follow.
The determination of the parameters should of course always be deferred to a pre-
processing step.

Condition (ii) is smoothness condition on f. For example, for « =1, we obtain
from Lemma 2.7:

sup 1°¢(1) = J 7).

Thus, we can replace A by [|f”| in the few instances where the latter quantity is known.
The supremum of (iii) need not be computed if the Sth moment of |X| is known.
By the generalization of the Van Bahr-Esseen inequality (Lemma 2.5, (ii)), we see that
we can take B=2""PE(|X|?). One should of course realize that something is lost if B
is chosen in this way.
The finiteness of C follows from (ii). In fact, for all real ¢,

at+l
aC = TAI/(QH),

where A =sup |t|'**¢(t). To see this, we argue as follows:

E s @ +1
C=J- ¢(t)dt§j dt+J Ao gp= g1 e 2 2L gy
0 a

0 s a

if we take s**'= A, a choice which minimizes the upper bound.

After these introductory remarks about M,, we shall proceed with the description
of some characteristic functions that belong to the class. First, it is well known that
any real even continuous function taking the value 1 at 0 and convex on [0, o) is a
characteristic function (this is Polya’s criterion (Polya (1949)). Fortunately, most

704 LUC DEVROYE

characteristic functions satisfying (i) also satisfy (ii) and (iii) for some values of the
parameters. More importantly, products of functions satisfying (i)-(iii) for some
parameters satisfy (i)-(iii) for some other values of the parameters, an observation
that will be crucial in the simulation of sums (§ 9). Thus, we have in our class M* = UM,
(note that M* is strictly included in M):

d(N=(1-t)5, az1;

()= (1-t|*), 0<a=1;

o(t) =exp (—-|t|"), 0<a=1 (the symmetric stable distribution);
&(t)=(1+|t|*)™", 0<a=1 (the Linnik-Lukacs distribution).

The symmetric stable distribution. The methods developed below can be applied
to the symmetric stable distribution. This is an instance in which the parameters of
the distribution are known beforehand, yet f is not known except as an integral or an
infinite series. For example, taking « =1 in (ii), we have

. [2\7°
A=sup P¢(t)=sup 2 e’ = (——) ,
t>0 ae

where a € (0, 1] is the parameter of the stable distribution. Also,
® 1
7rC=j e’ dt=F(—+ 1),
0 a

B=sup(1—e*)/t?
t>0
is finite for all B =a. In fact, for B =a, B=1.

For direct exact generators for the symmetric stable distribution, see Chambers,
Mallows and Stuck (1976) and Devroye (1984).

Densities with bounded spectrum. We say that a density has a bounded spectrum
when its characteristic function ¢ vanishes outside some finite interval [—7, T]. In
many applications, T is known. Since this imposes a smoothness condition on f, we
can expect that A and C can be bounded in terms of T. By convexity, we have
#(t)=(1—|t/T|),, and a simple argument shows that on [0, T], t'**(1—¢t/T) is
maximal for t=T(1+a)/(2+ a). Thus,

and

(1 + a)H—u

A t 1+a = T1+a .
Sl.lp' I ¢() (2)2+a
Also, C=T/2m.

4. A general rejection principle. We will develop a method here that will allow us
to avoid the inversion integral for characteristic functions, by introducing an additional
randomization in the t-domain. Assume that f, our density, can be represented as
follows:

f(X)=J g(t, x)h(t, x) dt

where

(i) g(¢, x) is a density in ¢ for all x;

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 705

(ii) 0= h(t,x)= H(x) for all t, x, where | H <oo.
Note that f is not written here as a standard mixture since both g and h depend upon
t and x! From condition (i) we also conclude that f= H. The following algorithm
produces a random variate X with density f:

A2. REPEAT Generate X with density H/| H.
Generate T with density g(-, X).
Generate a uniform [0, 1] random variate U, independent
of (X, T).
UNTIL UH(X)=h(T, X).
EXIT with X.

Proof. To prove our statement, we can argue as follows. Let E be the event “an
exit occurs in the first iteration”, and let A be an arbitrary Borel set of R. Then

h(t, x) f(x)
=x)= t dt = .
P(E|X =x) J g(t, x) H) HG)
Thus, if X is the random variate obtained when the algorithm stops, then
H(x
P(XeA,E)—J P(E|X=x)I(H) J' ILH

Also, P(E) =1/ H. By the independence between iterations,

P(XeA)= E(IIPI)iJ‘AILH=.[Af

Since A was arbitrary, X must have a density a.e. equal to f.
The number of iterations N in Algorithm A2 is geometrically distributed:

P(N=i)= IH<1_ILH)” iz1,

and

E(N)=IH

5. Representations for densities. In this section we will construct representations
for f in the form needed for Algorithm A2 (§ 4). We will derive a representation which
will be valid for small |x| in Lemma 5.2. For large |x|, another representation is needed,
such as the one provided by Lemma 5.3. We have to determine a threshold value below
which Lemma 5.2 is used. This is done by minimizing the integral under the function
H will respect to the threshold value: see Lemma 5.4. For future reference, we will
need the following fact:

LEMMA 5.1. For a€(0,1], x>0,

©1- t
J'o %dt:caxa’
where
C ——r(l_a)cos(ﬂ>— s
« a 2) 2@(a+1)sin(7a/2)

Proof. See Feller (1966, pp. 542-543) or Chung (1974, pp. 158-159). The
equivalence of both formulas follows from the identities sin (2u) =2 sin (u) cos (u),
and I'(1 — a)I'(a) = 7/sin (7wa).

706 LUC DEVROYE

LeEMMA 5.2. Let f€ M, with parameters A, B, C, « and B as defined in § 3. Then,
for |x|=(7wC/AC,)"*, we have f(x)=|g(t, x)h(t, x) dt for the following functions g
and h satisfying the conditions of § 4:

2sin’ (tx/2)

Clrme 70
a

g(t, x)=

h(t, x)= c—;lr-c,,|x|“t““¢(t) =C=H(x).

Proof. To obtain our representation, we start from the inversion formula for
characteristic functions (applicable because ¢ is real, even and absolutely integrable):

f(x) =% L cos (tx)o(t) dt

=lr (1) dt“ljm(l—ms(‘x))d’m a
m Jo 7 Jo

_c-1 rz sin? (‘—x)qs(t) dt
m Jo 2

(e o] 0 1
=CJ g(t,x)dt—J g(t, x) = C,|x|*t*" ¢ (1) at
0 0 w

= Jw g(t, x)h(t, x) dt.

This concludes the proof of Lemma 5.2.
We have not used the convexity condition (i) and the tail condition (iii) in the
definition of M, These will however become crucial in the following representation:
LEMMA 5.3. Let f€ M, with parameters A, B, C, a and B as defined in § 3. Then,
forall x # 0, we have f(x) = | g(t, x)h(t, x) dt for the following functions g and h satisfying,
the conditions of § 4:

= t =t=
g(t,x)=|x|cos (x), O0=t= 2|x|

h(t, x) = > ¥5(x) = BrP 71242871/ |x["*F = H(x).

| |15
Here

_ 21Tj) (27+ 11') (T 277]) (27Tj+ 77')
(xX)=¢lt+—=) -l t+——) - | + ——).
¥3x) "’(‘ W) TN) T T) T W T

Proof of Lemma 5.3. Let us first verify that g and h are valid functions: g is indeed
a density in ¢ for all x # 0. Furthermore, h = 0 because each ¢;, is nonnegative (by the
convexity of ¢ on [0, 0); note that t[0, 7/(2|x|)] when verifying this). This leaves
us with two tasks: first, we should prove that h(t, x) = H(x), and then, we must make
sure that f does indeed have the said representation.

By eliminating the periodicity of cos (#x), we have

=/ 2lx)

fx) == Lw cos () (1) dt =— L cos (1) go 0. () dt,

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 707

from which the representation follows. Let ¢} and ¢, be the left- and right-hand
derivatives of ¢. By convexity, we have for 0 <t <s <0,

|61(0)| = i)z |d ()| = |di(s)| = |$1(s)I-

Thus, for x>0,

¢j,z(x)§<£—2t)<‘¢ tﬁlﬂ\ ‘(b 277]+7r)‘>

()29
X X X

Hence, using the convexity, we have for positive integers J,

(277]) T 1-¢Q2aJ/x)
=)=

x (QaJ/x)
Now, by the four-point inequality (Lemma 2.2),
1-¢Q2m/ x))
2

Z (lfjt(x)—_

h(t, x)=— Z (x)=— (‘l/o:()+

=— (2J(1—¢(w/x))(1—¢(w/x 2‘»*((2:)»

=— (2(1 ¢(m/x))+7 (1—¢(2ﬂ/X)))

But we can use assumption (iii): 1 — ¢(¢) = Bt®, t >0, to bound the last expression
from above. The bound then formally reads

o o) Ao

This concludes the proof of Lemma 5.3.

We are now in a position to give a global representation for f, valid for all x #0,
by merging Lemmas 5.2 and 5.3 together. Note that the representation of Lemma 5.3
is also valid for all x # 0, but that the dominating function H is not integrable. It is
precisely the integrability of H that is required in Algorithm A2. In fact, we should
merge Lemmas 5.2 and 5.3 in such a manner that the integral under the new function
H is minimal. All of this is captured in the following lemma, which follows directly
from Lemmas 5.2 and 5.3.

LEMMA 5.4. Let f € M, with parameters A, B, C, a and B as defined in § 3. Define

e 7TC 1/a e R_B 1/(B+1) i (-
0= CA ’ °o=\"¢ s Xo=min (X, Xo

where D = P71 (2°7' +2). Then f(x) = g(t, x)h(t, x) dt for all x # 0, where g and h are
as in Lemma 5.2 when |x|=x,, and as in Lemma 5.3 otherwise. In particular, the
dominating curve H is

C, || = xo,

DB/|x|"", |x|> xo,

DB
J H= 2(Cxo"’ﬁ)-

H(x)= {

and

708 LUC DEVROYE

The cut-off point x, between the bounds C and BD/|x|'*? given in Lemma 5.4
minimizes | H over all possible choices of such cut-off points. This can be seen by
setting the derivative of | H with respect to x, equal to 0 and noting that its solution
is x8*'=(DB/C). If x} is greater than x), the representation of Lemma 5.2 is not
valid, and we must take the minimum of xg and x; as our cut-off point.

If x, in Lemma 5.4 is replaced by xg, the Algorithm A2 that corresponds to the

representation of Lemma 5.4 remains valid, but | H has increased or remained the same.

6. The algorithm. The algorithm can now be spelled out in more detail. The
evaluation of h and the generators for g(¢, x) will be the subject of § 8. For the density
H/[H, we can use the inversion method. Indeed, the symmetrized density 2H(x)/ |H,
x>0, has distribution function

B
2Cx/J H, 0<x=x,, 2(Cx0+%(xg"—x“’))/J' H, X > X,.

Inversion of this distribution function gives us a random variate with density 2H (x)/ |H,
x> 0. We summarize:

A3. [Prepocessing.] Choose a and B from (0, 1].
Compute A, B, C. Compute D =7""1(2°71+2).

-1 1/a
. [ma 7C "
Set Ca=1r(2l“(a+1)sm (7)) , x6=(a) , x0=(DB/C)1/(B+l),

Xo=min (x}, x3), I =2(Cxy+ DBB 'x5") =J H, p =2Cxo/I.

REPEAT
Generate X with density H/[H, i.e.
Generate a uniform [—1, 1] random variate V.

I
IF |V|=p THEN Xe—(E)V

B 1/B
ELSE X «sign V/(xg"—(nvl— Cxo)<D—ﬁ)> .

Generate a uniform [0, 1] random variate U, independent of X.
IF |X|=x, (ie. |V|=p)

THEN Generate T with density g(t, X)=2sin? (tX/2)/(C.|X|*t**"),
t>0.

ELSE Generate T with density g(t, X) =|X| cos (tX), 0=t=w/(2|X]).
UNTIL UH(X)=h(T, X),

1
where for |V|<p, h(T,X)=C ——C,|X|*T*"'¢(T), H(X)=C.
s

and for |VIZp, h(T, X)= (7l X)™ T #,+(X), H(x)= DB/|X|"**.
j=0

7. Analysis of the performance of the algorithm. If N is the number of iterations
needed before A3 terminates, then N is geometrically distributed, and E(N) =[{H
(see Lemma 5.4 for [H). Thus, | H is an appropriate measure of the expected time
taken by the generators for X and U and by the overhead of the REPEAT/UNTIL
loop. There are two other components that are not, at least not as far as we know until
now, measured by | H, i.e. the total time taken by the generators of T, and the total
time taken by the evaluators of h(T, X). Both times will be analyzed in § 8, just after
the generators and evaluator are presented.

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 709

It is helpful to verify just how close | H is to 1 in some important examples.
Example 1 below has computations that will be used in § 9 on the simulation of sums.

Example 7.1. (The symmetric stable distribution.) For the characteristic function
d(t)=exp (—|t|*), 0<a=1, we have (see §3) fora=1, B=a,

2/a
1 /1
A=(i) , B=1, c=—r(—+1),
ae w a

and thus C, = C,= /2, xb=(2/ 7)T'(1/ a+1)(ae/2)*°. Resubstitution in the formula
of | H, with x}, as cut-off point, gives

> 12
IH|G=1=%+—;T=5.850- -,
w e

et 32(1+v8
IH|a=l/2= 3t 2)
167 e*/2

Using Stirling’s approximation (I'(1/a+1) ~ (27/a)"*(1/ ae)"/* as al0), it is quickly
verified that as a0, IH increases as 20 (wea®)”".

It is important to notice that the expected number of iterations is not uniformly
bounded in a € (0, 1] for the symmetric stable family. This suggests that the design of
the algorithm could be improved upon. Nevertheless, for values of a near 1, E(N) is
quite acceptable when one considers that the algorithm is not specifically designed for
the symmetric stable family. Also, no attempt was made to optimize « and .

=12.069 - - -.

8. Practical details and more analysis. It is important to know how much time is
spent globally, i.e., in the basic Algorithm A3 (§ 6) with the generation of random variates
with density g. We offer the following crucial lemma:

LEMMA 8.1. Let N be the number of iterations required to generate a random variate
T with density g(t, X) where X has density H/ [H. Let N,., be the total number of
iterations spent on this generator before Algorithm A3 halts. Then

E(Nioa)) = E(N) J H.

Proof. Ny, is distributed as N,,+: - -+ N,x + N, where K is the number of
rejections in the Algorithm A3, N,,,- - -, N,k are i.i.d. random variables distributed as
N, conditioned on rejection (i.e. UH(X)> h(T, X)), and N, is independent of the
N,;’s, and is distributed as N, conditioned on acceptance. Taking expectations, we have

E(Ntotal) = E(K)E(er)+ E(Na)

We also have E(K)+1=1/p=[H, and E(N)=pE(N,)+(1-p)E(N,,). Combining
this shows that E(N,y.) = E(N)/p.

We will discuss random variate generation for the densities g(#, x) of Lemmas 5.2
and 5.3. Since these generators are fixed once and for all, they should be implemented
with some care.

LEMMA 8.2. The following algorithms can be used to generate a random variate T
with density g(t, x)=|x| cos (tx), 0<t< 7/(2|x|).

A4. Set T<|1/x|arcsin (U) where U is a uniform [0, 1] random variate.

A5. REPEAT Generate (U, T) uniformly on [0, 1]x[0, 7/2].

710 LUC DEVROYE

IF U <1-T?/2 THEN EXIT with T/|x|
ELSE IF U<1-T?/2+T*/24
THEN IF U <cos (T) THEN EXIT with T/|x|
UNTIL False (This is an infinite loop.)

The number of iterations, N, in AS is a geometrically distributed random variable
with E(N)=x/2.

Proof. A4 is an inversion algorithm because |x| cos (tx) has distribution function
sin (t|x]), 0<t<w/(2|x]). AS is a rejection algorithm with bounding function |x|. It
uses “squeeze”’ steps based on the inequalities 1 — £°/2 = cos (¢) <1—t*/2+t*/24, desig-
ned to avoid the cos(-) evaluation most of the time.

Lemma 8.1 shows that where expected time is concerned, we can study the expected
number of iterations in Algorithm A3, and the expected number of iterations for the
g-generator separately.

As we have seen in Lemma 8.2, if | X|> x,, E(N|X) = #/2. We will see in Lemma
8.4 that for | X|= x,, there exists a g-generator for which E(N|X)=2.0662. Thus, by
Lemma 8.1, E(Nyoy) =2.0662 | H. In fact, better bounds are obtainable by considering
the probability P(|X|> x,) and taking a convex combination of the individual bounds.
Before we give the second g-generator, we will show an algorithm that does not require
the exact evaluation of cos.

LEMMA 8.3. The following algorithm is equivalent to Algorithm AS (i.e. it produces
a random variate T with the same distribution.)

A6. REPEAT Generate (U, T) uniformly on [0, 1]X[0, 7/2].
Set k<0, S«1, Pe1.
REPEAT Set k< k+2, P« PT%/(k(k—1)), S« S—P
IF U=S THEN EXIT with T« T/|x|.
ELSE Set k< k+2, P< T*P/(k(k—1)), S« S+ P
UNTIL U>S
UNTIL False.

Furthermore, the expected number of inner loop iterations does not exceed

. 4j+1 1
Y (’—T) =1.08Z.
A\2) @ o %2

Proof. Lemma 8.3 is based upon the fact that cos (t) is sandwiched between
successive partial sums in the series

1 1
cos (t)=1 —at +4—1—'t -
Since for each ¢ this sum converges, algorithm A6 halts with probability one. Let Ny, 1
be the number of iterations in the inner loop for a given pair (U, T). (Thus, Ny, r is
a deterministic function of U and T.) Now,

2 2k
P(Nyr>j)= (Z (- 1)2k(2k), <U< Z(I)Zk(zk)v)

w/2 t4j

= E(min (1, TY/(4)1)) = E(T4j/(4j)!)=J

St

0 7T(4J)!
77_4_]’+1 l 2
—(5) @+ 7

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 711

Thus,

® 2 2 (w)“f“ 1
E(Nuyr)=Y P(Nyr>j)=— = —<1.08.
(Nur)= X P(Nur>D=7 2 (3) G

Let N be the number of inner loop iterations taking into account that many outer
loops could be executed before A6 halts. As in Lemma 8.1, it is easy to prove that the
total expected number of inner loop iterations is the product of the number of outer
loop iterations (7/2, by Lemma 8.2) and E(Ny,r). This concludes the proof of
Lemma 8.3.

LemMA 8.4. The following algorithm generates T with density g(t,x)=
2sin” (tx/2)/(C,|x|*t**"), t>0.

A7. REPEAT Generate (U, V) uniformly on [0, 17
8U 1/(2—a)
a2°‘>
2U 1 \\ Ve
ELSE T<—2<l - a(m—z_a))
V< Vmin (1, T?/4).

IF U<a/2 THEN T<—(

2
IF V;(ET— T3/48> THEN EXIT with T« T/|x|

ELSE IF V=sin®(T/2)
THEN EXIT with
T< T/|x|.
UNTIL False.

The number of iterations, N, is a geometrically distributed random variable with
41-a)
I'(3—a)cos (wa/2)2%"
We have lim, o E(N) =2, lim,y, E(N)=4/m, and
((1.5 —y—log2)*
(27%/3-5)

where y =0.577215664 - - - is Euler’s constant.
Proof. The random variate T|x| has density 2 sin® (/2)/(C,t*™"), t>0, if T has
density g(¢, x). For this density, a rejection algorithm is easily constructed, because

t 2 2\ 1
2sin® <5>/(Cat°’“) éF min (1, Z)F

Let us call the dominating curve g*(¢), t> 0. If rejection is used from g*, then the
expected number of iterations is

— *___2_ i 2 _ 4(1—0)
E(N)_Jg T C, (2“ a(2—a)) "T(G-a)cos (ma/2)2%

The proofs of the statements about E(N) will be deferred for the time being. The
density g*/[g* can be written as

20a(2—a) 'n(l Q)
2 mi g)

E(N)=

sup E(N)=2exp

o<a=1

) <2.0662,

712 LUC DEVROYE

The corresponding distribution function is

a®2-a =t=< ad _1__(._l.__l.) . a_____a(Z—a)
2 8t , 0=t=2, 2+a 7 qa 2 7 t>2.
The random variate T in Algorithm A7 is obtained from this by straightforward
inversion. For the rejection/acceptance step, we need to verify whether
V min (1, T%/4) =sin? (T/2) where V is a uniform [0, 1] random variate. The Algorithm
A7 does exactly that. We have added a squeeze step, based upon the inequality
sin® (1) = (t—£2/6)%

Let us now turn to E(N). We will use the inequality 2/ =u/sin (wu/2)=1,
0=u=1, several times. The values for a0 and a=1 are obtained without any
calculations. For the uniform upper bound, we will use some properties of the gamma
function and the psi-function ¥(u)=(log (I'(x)))'=T"(u)/T'(u), u>0 (see e.g.
Whittaker and Watson (1927) for the details). Obviously,

1. ¢ <lsin(7ru/2) I"(2+u))22

> i re+u) . . T'(u)
E(N) oxu<i\2 2"

=2 inf

2=u=3 2%

inf

o<u<1 2¥*2

We claim that the infimum of the last function (I'(u)/2") is reached for some u € (2, 3).
The logarithm of this function is convex in u. Also, its derivative is ¥(u)—log 2. Since
W(2) = —y+1, the derivative is negative at u =2. And because ¥(3)=—y+1+3, it is
positive at u=3. By Taylor’s series with remainder and the fact that ¥'(u)=
Yoo (u+n)?is a decreasing function of u, we note that

log (T(u))—ulog2=—-2log2+(u—3)(1.5— y—log2)+(u—3)*¥'(3), 2=u=3.
The second order (in u) lower bound takes as minimal value

(1.5—y—log2)*

-21 -
0g2 4V'(3)
Now,
© 1 m? 1\ 2
W'3)=4 Y =4l —-1-=>)==#*-5.
) "§3n2 (6 4) 37T >
Thus,

_(1.5—y—log 2)2)

(BN 22 exp (-5

4
which was to be shown.
We conclude this section with the problem of the evaluation of the infinite sum
h(t, x)=(m|x|)™" Z;';o ;,(x) in finite time, or rather of how to avoid the infinite series.
We propose the following algorithm for deciding whether h(T, X)= UH(X):

A8. IF |X|=x, THEN Compute h(T, X), and set Decision
«[h(T,X)= UH(X)].
ELSE Y« UH(X)w|X|, J«0, S<0.
REPEAT S« S+ ¢, r(X), J«J+1
UNTIL (S>Y) OR (S< Y -(2J)'(1—-¢2nJ/|X]))).
IF S>Y THEN Decision « False
ELSE Decision « True.

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 713

In Algorithm A8, “Decision” is a logical variable equal to [A(T, X)= UH(X)].
Regardless of its exactness, the algorithm halts in finite time almost surely: this follows
from the monotonicity of the series (each ¢;, is nonnegative, a consequence of the
convexity of ¢) and the decreasing nature of the error bound

JZ:, U (x)= (2])“(1 - ¢(2—|%))

(see proof of Lemma 5.3 for its derivative). But because of this error bound, we also
note that the correct decision is reached almost surely.

The analysis of the time taken by Algorithm A8 in the global context of algorithm
A3 requires some additonal work. To simplify things, we will once again concentrate
on the number of iterations. For Algorithm A8, the number of iterations is defined as
one when |X|=x,, and as the number of times the REPEAT/UNTIL structure is
executed when |X|> x,. The total number of iterations in Algorithm A3 is thus

Ny—1

]\,total= Z Nri + Na
i=1

where N, is the number of times the outer loop in Algorithm A3 is executed, and
Ny N, - -+, Ny, -+ - are independent random variables: N, is distributed as the
number of iterations in A8 conditional on the decision that h(T, X)= U(HX) is true,
and N, k=1,2, - - - are similarly defined, but now conditional on the decision being
false. We can argue again as in Lemma 8.1, and conclude that

E(Ntotal) = E(N) J' H

where N is the number of iterations taken by algorithm A8 without any conditioning
(i.e., X has density H/[H, T has density g(¢, X), and U is uniformly distributed on
[0, 1]). Unfortunately, as we will see below, E(N) =00 in most cases except the most
trivial ones, and Lemma 8.1 is of little direct use to us. However, we can offer the
following generalization of Lemma 8.1:

LEMMA 8.5. For re(0,1), E(N{.)SE(N") | H.

Proof. The proof of Lemma 8.5 can be mimicked after one notes that

Ny-1

Ntrotalé Z N::+Ntrz
i=1

LEMMA 8.6 (Performance of the h-evaluator). Let N,y., N be as defined above,
and let f € M,.
(1) Fornz=1,
1

P(N> n)_m

(+log, (A(n+1))>

where

27BY? _mB(H

=

A= Xo D

(2) For 0<r<1,

"< __.1___1_.1 1-r
I ()
r

E(Niota _j H+_l_——r<E+A1 r)

714 LUC DEVROYE
(3) Fornz=e,

P(Ntotalg n) = € I H+f—1—9g—(—n—)-<l+ Al/(log n))
n mn B

éf(j H+%(A—1)+> LB +1) log (n)

n 7hn

éej.H(H_E) +e(B+l)log(n)
n D 7Bn

<e]'H 27 e(B+1)log(n)
~ n (+5elog(7r)>+ 7Bn

_e(B+1)log(n)
T B n

Proof. For n=1, we have P(N > n)= P(|X|> x,, N> n). Now, by our stopping
rule,

(1+0(1)).

P(N>n,|X|>x|T, X)

éI[|X|>x°]P(Y—2(—nl+—1)(1 —¢(3’—’§;’(—'+1))) ééo yr(X)S YIT, X)

_ 1 _[(27(n+1) 1
=I[|X|>xo]2(n+1)(1 ¢< |X|)) 77|X'H(X)

1 1 . 27r(n+l))B)
= Iixi>x 1, Bl ————
Toxt=a5057y wIXIH(X)mm((IX|

where I is the indicator function of an event. In the chain of inequalities, we used the
fact that U is uniformly distributed, and obtained the last inequality from the definition
of M. The upper bound does not depend upon T. Thus, if X has density H/ I H, and
we take expectations on left and right, we obtain

J‘°°H(y) 1 (277(n+1)
2(n+1)")y, JH @yH(y) y

8
P(N>n)=) Iiy=2m(n+1)B"#) Ay

1 ® 1
+ 2 j I[y<2‘rr(n+l)Bl/B] dy

2(n+1)" J, myH(y)
2 ®
TQr(n+1)"P[H Lo By P Lyesmnsnypi/ey dy
2
1 +1)).
27T(n+1)jH og:+ (A(n+1))
There are two cases: If A(n+1)=1, then, the first term becomes
2
2a(n+1)B[H’
If A(n+1) <1, the last term in the upper bound is zero, and the first term becomes
2B 2 2
=(A(n+1)) =

Q2w (n+1))""* | HBxE 2a(n+1)B[H 2a(n+1)B [H’
To prove the bound on A, use | H =2(Cx,+ DB/Bx5).

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 715

We will use the notation u to denote the largest integer not exceeding u. Let
re (0, 1) be a constant. Then,

E(N')=I P(N>t‘/’)dt=J P(N>L/’)dt§1+j P(N>t"") dt
0 0

1

1 (= 1 (
=1+ —+1lo (A(t‘/’+1)))dt (by part (1))
wfHJ (£/7+1) & yP
1 (*
=1+—— t“/'(—+1 At‘/’)dt ince tV"+1=1¢"
-1H), 3 og () (since t")
=1+; we"’(l+log (a ey))re'ydy (set t=e")
7[H), B

1 r r
=1+ + A“')
w]H(ﬁ(l—r) 1-r ’
which proves (2).
For part (3), we start with Markov’s inequality:

E(JZM) AH, v (LA)

P(Nya=n)= =
(total n) n 17'(1—")"

Clearly, we can still choose r. Expressions of the form 1/((1 —r)n") are minimized by
setting r = 1— (log n) . The corresponding r is in the range (0, 1) if n = e. Also, n" = n/ e.
Resubstitution of the given value of r gives the bound

P(Na = n)<eIH M(Al/log(n))
otal ﬂn B

The chain of inequalities that follows in part (3) is shown as follows: first, A'/'8(" =
1+ (1/log (n))(A—1).. For the last inequality, it suffices to establish that

B__2m
D™ Selog ()’

But B/ D =2uB/(w? (2P +4)). The factor 2° +4 is at least equal to 5. The function
B/m"® is maximal when B=1/log (7). Resubstitution gives the maximal value,
1/(elog (#)). This concludes the proof of the chain of inequalities. The last part of
(3) is trivially true.

Remark 8.1. The bottom line of Lemma 8.6 is the collection of inequalities for
P(Nya1 = n). The expectations E(Niya.), 0<r<1, were only used as a handy tool to
obtain bounds for these probabilities in what could be termed a Tauberian argument.
The first bound for P(N,y = n) depends positively on _[H and A, and negatively on
n and B. From this, one could conclude that it is advantageous to pick B as large as
possible (preferably equal to 1 if this is feasible). It is more important to realize that
the main term in the last upper bound depends upon B and n only: for B =1, it is
equal to (2e/7)(log n/n). The second term in the upper bound decreases faster, i.e.
as 1/n, but has a coefficient that is proportional to | H.

Remark 8.2. We alluded earlier to the possibility of having E(N)=c0 for the
h-evaluator. We will give a brief outline of how this can be proved. It suffices of course
to show that for almost all ¢, x, E(N|T =t, X = x) =00, where “almost all” refers to
the distribution of (T, X). To include this, it suffices in turn to obtain for almost all ¢, x:

c(t,x)+0(1)

P(N>nT=t,X=x)=
(N>nT=1, X =252,

716 LUC DEVROYE

where ¢(t, x) is a positive number depending upon ¢ and x only, and o(1) tends to 0
with n, but is allowed to depend upon ¢ and x. When H(x)> h(t, x), it is easily seen
that we can take c(t, x) = (2#|x|H(x))™".

Remark 8.3. (The factor A.) In Lemma 8.6(1), we have obtained a simple upper
bound for A in terms of | H and B. In fact, for all practical purposes, A can be
considered as a constant, since it is bounded from below by a positive-valued function

of B only:
1 B 1/(B+1)
211'(o1) .
PP +2) B+1

This can be shown as follows: let us set D==7""1(22""+2), and note that x,=
(DB/ C)Y®*Y_ Also, by a geometrical argument, for ¢ € M,,

© B~V/B
C=lj ¢glj (1—-BtP) dt= 1 B

mJo m Jo wB'/P B+1
Thus, (BY#/x,)#"' = B/(wD(B +1)), which was to be shown.

9. Simulation of sums. Characteristic functions are mainly used in the study of
sums of independent random variables. We have seen that we can generate the sum
S,=X;+---+X, of niid. random variables X; with common characteristic function
¢ € M, without actually generating the individual Xi’s: just apply the algorithm of § 6
to the characteristic function ¢" of S,, and note that ¢" belongs to some M, when ¢
belongs to some M, (with possibly different 6’s).

The real issue here is the following: if the time taken by the algorithm grows
linearly with n or faster, it seems indicated to generate S, by generating the individual
X;’s and then taking the sum. Thus, we should verify how the time varies with n, in
order to be sure that our algorithm is efficient for simulating sums directly. What we
will show here is truly exciting: the time taken by Algorithm A3 remains essentially
uniformly bounded by a random variable independent of n. This statement needs some
qualification: we will take some ¢ € M, (with parameters A, B, C, a, B), and consider
the class ®(¢)={o, ¢> ¢>,---, ", - - -}. Keep a and B fixed throughout, but define

A,=supt'*¢"(t), B,=sup 1—473(’—), C, _1 J o" () dt.

>0 >0 t m™Jo
We will also write x,o, H,, A, et cetera to make the dependence upon n explicit. For
the time being, we assume that A,, B, and C, are all exactly known. This restriction
makes the algorithm only efficient when many random variates are needed for fixed
n. It should be stressed that the algorithm only requires upper bounds for A, and B,,
but for the sake of a smooth analysis, it is simpler to work with the exact values
throughout.

As is well known from the central limit theorem, the behavior of ¢(t) near the
origin determines to a large extent how S, behaves. Thus, to analyze our algorithm,
we will assume that 1—¢(t)~ at® as t|0, for some a, b>0. (Clearly, b=1 for our
class of distributions.) The parameters a and b need not be known to the user. They
are only needed here in the analysis of the performance.

All our performance measures which were developed for computing the time taken
for constant overhead per iteration, for g-generators and for h-evaluators, depend
upon H, and A, only. If we want uniform performances over the class ®(¢), i.e.
uniform upper bounds for E(N), (EN{ya), 0<r<1, and P(Nu. = n) in the notation

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 717

of previous sections, we need only insure that

sup j H, <oo.

(Note that this implies that sup, A, <o (Lemma 8.6)). Thus, we should verify how

A,, B, and C, vary with n. This is done in Lemma 9.1. In Remark 9.1 we will see that

when ¢ is in the domain of attraction of a stable law, then the performance of the

algorithm approaches that of the algorithm when applied to the limiting stable law.
LEMMA 9.1 (asymptotic behavior of A,, B,, C,). Let ¢ € My, and let

1-¢(t)~at® astl0

for some positive numbers a, b. Then

1+ a (1+a)/b
An ~<) b
nabe

-y

1_
B,~ B*(na)®’®, where B*=sugyp—fb (=1if B=b),
y>

1
C, ~—1-r(1+—)(na)‘/b.
T b
Proof. For all £ €(0, 1), there exists #,> 0 such that

tO (o] to o0
I (1-a(1+¢&)t?)"dt==C, =I " éj (1-a(1-¢)t®)" dt+J. "
0 0 0 ty
But |7 ¢"=¢""(to) [}, =mC1¢""'(t,), which decreases exponentially fast with n.
(We used the fact that ¢ is monotone.)

If we set at’n =y, then

fo 1 atgn y
J ‘1—at">"dt=<an>—””zj (“‘)J’””“ dy
0 0 n
1 o
~(an)—l/sz e—yyl/b—l dy
0

= (an)‘”’%[‘(%) = (an)"“’I‘(l +%)

Here we used (1—u)=exp (—u), u=0, the dominated convergence theorem, and the
definition of the gamma integral. We have proved our claim about C, by the continuity
of the right-hand side of the last expression in a, and the arbitrariness of e.
Consider now A,, and find for each £ € (0, 1) a constant #,> 0 such that 1—¢(¢)

is between a(1—¢)t® and a(1+¢)t®, |t|=t,. Clearly, since ¢ € M,,

sup 1" P (1) = A" (1),

t>1
which decreases at an exponential rate in n, and is thus asymptotically negligible in
comparison with polynomially decreasing terms. Again basing ourselves on a continuity
argument (in a), it suffices to show that

1+ o\)b
sup ' (1—at®)" ~(—) .
,gg () nabe

718 LUC DEVROYE

The supremum is reached on R for t*=((1+a)/(nab+a(1+a)))"? as a quick
computation shows. Since t*<t, for n large enough, we can substitute the value t*
in ***(1—at®)", and obtain

1+« (1+a)/b 1+a\™" (14 a)\+ars 14 @\ re)/s
Garanmm) (5) ~Ga) ()
nab+a(1+a) bn nab nabe

For B,, we employ a similar proof: £ and ¢, are as before. First,

1-¢"(1) _1- (1-Bt?)"
t>1, tﬁ = tB
0

=1,"(1-(1-Bt5)")1 15"

Thus, by continuity in a of the limit, we need only show that

1-(1—at®)"
sup L2020 g

0<t=ty

)ﬂ/b.

Reparametrize by defining y = ant®. Then, the supremum can be rewritten as

sup (L__(_l_iL")”)(na)ﬁ/b ~ B*(na)®®.

O<y§amg y p/b
This concludes the proof of Lemma 9.1.

LEMMA 9.2. (Uniformly bounded time for ®(¢).) Let ¢ € M,, and assume that
1—¢(t)~at® as t| 0 for some positive numbers a, b. Assume further that B=b. If N is
the number of iterations in Algorithm A3, N, is the number of iterations executed in
generating random variates from density g, and N, is the number of iterations in the
h-evaluator, then

sup J' H, <00, sup A, <00,
sup E(N) <o, sup E(N;)<oo, sup E(N;)<o, allre(0,1),

and

supP(N,, z)<(1t0(1))e(B+1)10gl as i oo,

Proof. The condition B = b is needed to insure that B*, defined in Lemma 9.1, is
finite. From Lemma 9.1, we can conclude that

’ m Gy , 1/b
an (C A) c (na) ’

nO - (DBn/ C)1/(B+1) ~ c"(na)l/b
and thus
Xn0 = Max (X, Xno) ~max (c’, ¢")(na)"®

as n- 00, where ¢’, ¢” are positive constants. Hence C,x,, has a positive finite limit,
¢;, and DB,/(Bx%) has another finite limit, c,. Thus, recalling the definitions of | H,,
and A,, we notice that both tend to a constant as n—> oo, and are therefore uniformly
bounded in n. The remainder of the statements of Lemma 9.2 follow directly from this
and various lemmas and remarks scattered throughout the paper.

Remark 9.1. (Attraction to the stable law.) The condition put on ¢ in Lemmas 9.1
and 9.2 puts it in the domain of attraction of the stable distribution with parameter

AN AUTOMATIC METHOD FOR GENERATING RANDOM VARIATES 719

b: ¢(t)=exp (—|t|) (see e.g. Feller (1966)). For such laws, if we take a =1, 8 =b,
we have seen in Example 7.1that A = (2/eb)*®, B=1, C =(1/ w)['(1+1/b). But observe
that for ¢ as in Lemmas 9.1, 9.2,

1

2/b 2\¥* -1 e 1
A,(na)”’>\—) , B,(na)'>1, C,(na)"’>—T(1+-).
eb T b

Since all the performance measures encountered until now are continuous functions
of A,, B, and C,, it is a straightforward exercise to prove that their asymptotic limits
(which we know exist, see Lemma 9.2) are precisely equal to corresponding values for
the stable (b) distribution!

Acknowledgments. The support of the Australian National University (and in
particular of Peter Hall and Richard Brent), and the sharp critical comments of G. Letac
(1983) are gratefully acknowledged.

REFERENCES

[1] J. AHRENS AND U. DIETER, Computer methods for sampling from gamma, beta, Poisson and binomial
distributions, Computing, 12 (1974), pp. 223-246.
[2] D.J. BEsT, Letter to the editor, Ann. of Statist., 27 (1978), p. 181.
[3] S. BOCHNER, Lectures on Fourier integrals, in Annals of Mathematics Studies 42, Princeton Univ.
Press, Princeton, NJ, 1959.
[4] R. P. Boas JR. AND M. KAC, Inequalities for Fourier transform of positive functions, Duke Math. J.,
12 (1945), pp. 189-206.
[5] P. BRATLEY, B. L. FOX AND L. SCHRAGE, A Guide to Simulation, Springer-Verlag, New York, 1983.
[6] J. M. CHAMBERS, C. L. MALLOWS AND B. W. STUCK, A method for simulating stable random variables,
J. Amer. Statist. Assoc., 71 (1976), pp. 340-344.
[7] R. C. CHENG AND G. M. FEAST, Gamma variate generators with increased shape parameter range,
Comm. ACM, 23 (1980), pp. 389-393.
[8] K. L. CHUNG, A Course in Probability Theory, 2nd ed., Academic Press, New York, 1974.
[9] L. DEVROYE, The computer generation of random variables with a given characteristic function, Comput.
Math. Appl., 7 (1981), pp. 547-552.
, Methods for generating random variables with Polya characteristic functions, Statist. Prob. Letters,
2 (1984), pp. 257-261.
[11] W. FELLER, An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley, New York,
1966.
[12] T. KAWATA, Fourier Analysis in Probability Theory, Academic Press, New York, 1972.
[13] G. LETAC, A question asked in Restaurant “Le Paysan” in Toulouse, France, 1983.
[14] Yu. V. LINNIK, Linear forms and statistical criteria: 1, 11, in Selected Translations in Mathematical
Statistics and Probability 3, 1962, pp. 1-40, 41-90.
[15] E. LUKACS, Characteristic Functions, Hafner, New York, 1970.
[16] G. MARSAGLIA, A squeeze method for generating gamma random variables, Comput. Math. Appl., 4
(1977), pp. 321-326.
[17] G. PoLYA, Remarks on characteristic functions, Proc. Third Berkeley Symposium 1945, Univ. California
Press, Berkeley, CA, 1949, pp. 115-123.
[18] D. A. RAIKOV, Sur les fonctions positives définis, Dokl. Akad. Nauk. SSSR, 26 (1940), pp. 860-865.
[19] B. W. SCHMEISER, Methods for modeling and generating probabilistic components in digital computer
simulations when the standard distributions are not adequate: a survey, Proc. 1977 Winter Simulation
Conference, Orlando, FL, 1977.
[20] B. W. SCHMEISER AND R. LAL, Squeeze methods for generating gamma variates, J. Amer. Statist.
Assoc., 75 (1980), pp. 679-682.
[21] B. VAN BAHR AND C. ESSEEN, Inequalities for the rth moments of a sum of random variables, 1 =r=2,
Ann. Math. Statist., 36 (1965), pp. 299-303.
[22] J. vON NEUMANN, Various techniques used in connection with random digits, Monte Carlo Method,
National Bureau of Standards Series 12, 1951, pp. 36-38.
[23] E. T. WHITTAKER AND G. N. WATSON, A Course of Modern Analysis, Cambridge Univ. Press,
Cambridge, 1927.
[24] N. WIENER, On the representation of functions of trigonometric integrals, Math. Z., 24 (1925), pp. 575-617.

[10]

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

