Acta Informatica 24, 277-298 (1987)

© Springer-Verlag 1987

Branching Processes in the Analysis
of the Heights of Trees

L. Devroye*

School of Computer Science, McGill University, 805 Sherbrooke Street West,
Montreal PQ, Canada H3A 2K6)

Summary. It is shown how the theory of branching processes can be
applied in the analysis of the expected height of random trees. In particular,
we will study the height of random binary search trees, random k —d trees,
quadtrees and union-find trees under various models of randomization. For
example, for the random binary search tree constructed from a random
permutation of 1, ..., n, it is shown that H /(c log(n)) tends to 1 in probabil-
ity and in the mean as n— oo, where H, is the height of the tree, and c

2
=4.31107... is a solution of the equation clog (-:—)=1. In addition, we
]

show that H, —clog (n)=0(1/ log (n) loglog (n)) in probability.

1. Introduction

The purpose of this note is to introduce a simple technique which can be used
in the study of the height of some types of random trees. Heights of random
trees can be studied by means of a detailed analysis of the generating function
of the number of trees with height not exceeding a given value: see for example
[9, 18, 34, 29] for several kinds of ordered trees, and the survey papers by [13]
for other trees including binary trees. The height of random tries is studied in
[11, 14, 15, 24-26, 28]. This approach has been particularly successful for trees
in which randomness is defined by making-each of the possible shapes equally
likely.

For the random binary search tree, under the standard random permu-
tation model for the data, a veriety of techniques have been used in the
analysis of various quantities. For example, the result that the expected depth
of the n-th node in an n-node tree is asymptotic to 2log(n) can be found in
most textbooks on data structures and algorithms [1, 2, 19, 20]. The expected

CR Categories: 3.74, 5.25, 5.5
* Research of the author was sponsored by NSERC Grant A 3456 and by FCAC Grant EQ-1678

278 L. Devroye

height is known to be asymptotic to 4.31107...1log(n) [30, 11, 16]. In this note
we would like to provide the readers with a simple general technique for
studying the expected height of trees including the expected height of the
random binary search tree. The method is based upon simple properties of
branching processes. This is a situation in which the techniques seem more
important than the results. We will briefly indicate how they can be applied to
other trees too such as random multidimensional search trees and union-find
trees, but we do not imply anything about the usefulness of these particular
trees. Furthermore, there is a severe penalty for the added simplicity: we will
only be able to obtain the first term in the asymptotic expansions. In addition,
several new results will be proved. For example, if H, is the height of a
random tree on n nodes, then

clog(n)

— 1 in probability

and
E(H,)~clog(n),

where ¢ is a given constant. Note that “in probability” is to be taken in the
standard probability theoretical sense. In combinatorial jargon, this corre-
sponds to “almost all”. Thus, the first statement can be rephrased as follows:
for all ¢>0, almost all permutations of 1, ... ,n yield trees of height H, between
(c —¢) log(n) and (c+¢) log(n) as n— oo.

Occasionally, there will be explicit probability bounds with various uses,
but the method is generally not designed to yield unlimited asymptotic ac-
curacy in expansions of quantities such as E(H,). It is also not designed to
solve the problem of the asymptotic distribution of H,, which in the case of
the random binary search tree appears to be rather difficult to obtain by any
method. Nevertheless, we will illustrate how some possibly suboptimal but
useful tail estimates can be constructed for the difference H, —c log(n).

2. Some Results from Branching Processes

In this section we will define some terms and recall fundamental properties of
branching processes. For proofs, the reader is referred to [17]. The particular
branching process of use to us is the Galton-Watson process, which can be
defined as follows. Assume that we have a population at time (generation) 0 of
one element. Each element in each generation is replaced in the next genera-
tion by a random number (say, X) of elements with given distribution:

P(X=i)=p, (i=0,1,2,..).

These replacements are independent of each other, and the probability vector

Po> Dy --- is fixed. Thus, at time 1, we have X elements, and at time 2) X;
isX

where X, X,, ... are iid. random variables. The total population size at time "

is Z,. The first result needed here concerns the extinction or survival of the

Analysis Height Trees 279

species. The most important parameters governmg the asymptotic behavior ot
Z, are the mean u of X and the variance 62 of X.

Theorem 1. The extinction probability theorem. Let Z, be a Galton-Watson
process defined by a probability vector with mean p. Then,

P(lim Z,=0)=1—P(lim Z,=) =gq

n— o n— oo

where q=1if p<lor u=1, p,>0 and 0L g <1 otherwise.

The parameter g, the probability of eventual extinction, also characterizes
the branching process. It is 0 only if p,=0. At a crucial point, we will need an
inequality connecting g with the distribution of X. We have:

Theorem 2. In a Galton-Watson process with parameters u>1 and %<0, Z, /u"
tends in distribution to a nonnegative random variable W where

E(W)=1,

2
Var (W)=——,

w—p
P(W=0)=q.

Consequently,
2
BE—u
1=y

If only po, Py, -.-, Py Gre positive, then

u—1

1—gxt—.
M

IIV

Proof of Theorem 2. Only the last two inequalities require a few words of
explanation. By the one-sided Cantelli inequality (see e.g. [27], p. 145) or [32],
0) Var (W) _ Var(W)

=Var(W)+E*(W) Var(W)+1’

P(W=

[t is important to note that the process grows roughly speaking as Wu" where
W is a random variable, which is strictly positive when p,=0, and which is
positive with probability 1 —q in all cases.

The last inequality can be obtained as follows. Let

M .
fs)= '—Zo p;s

be the generating function for the branching process, where s€[0, 1]. Then the
obvious inequality

s‘<(1 L) +—-i— sM
DiS = M D; Mpi

280 L. Devroye

implies
l i o i poou
< 1——) p;+ pisM=1- sM,
S92 7, (1 57) ret 2 g =1
It is known that g is equal to the value of s for which f(s)=s. Thus the
solution of

1-L£ 4 B o

MM TS

provides an upper bound for ¢. To obtain a good approximation of this value,
we first find the point u where the derivative of the upper bound is 1, i.e.

u=pM-1,

We certainly have g <u, and in view of the convex nature of the polynomial in

s, we also have g<1 _lel—+ :4 uM, which gives us

3. The Random Binary Search ’T{ree
i

We define a random binary search tree as a binary search tree constructed
from a random permutation of 1,...,n, where all permutations are equally
likely, and insertion is carried out in the standard manner. The height H, is the
number of nonempty levels minus one. In this section, we establish a crucial
link between random binary search trees and trees of random variables. The
root of a random binary search tree splits the n —1 remaining elements in two
sets, one for each subtree, where the size of the left subtree is distributed as
[nU], and U is a uniform [0, 1] random variable. Ignoring the floor function
for a second, the subtrees are roughly distributed as (nU, n(1 —U)). Each of the
subtrees can be split in a similar fashion, requiring this time two new uniform
[0, 1] random variables. This process can be repeated at all levels. In this
manner we obtain a tree of products of uniform random variables. More
formally, let T, be a complete binary tree with k full levels of edges. The total
number of edges is 21 +224... 42k=2k+1_2 We will use the symbol p for a
path from root to leaf (there are 2* such paths in T;). Consider all edges
pairwise in level order and from left to right, and associate with each pair an
independent random vector distributed as (U,1—U) where U is uniformly
distributed on [0, 1]. For a path p in T,, we define the path value V(p) by

iep

where X, is the uniform random variable associated with edge i on path p.
Thus, there are 2* different path values V(p). The difficulty arises from the fact

Analysis Height Trees 281

that the V(p)s are heavily correlated. We are in particular interested in the
maximal value of the V(p)’s. Let us define

L1 (k=0)
*“lmax V(p) (k>0)

Theorem 3. Let n2>1, k=1 be given integers. Then the height H, of a random
binary search tree on n nodes is related to the random variables Z, via the
following inequalities:

1+k 1 k
=) spi,zisP (2,2,)s2P([] Uz;),
i=1 h

Pz

where Uy, ..., U, are i.id. uniform [0, 1] random variables.

Theorem 3 is proved in [11] by induction on k. It suffices to note that sizes
of the subtrees of the root of an n-node tree are at most nU, n(l1 —U) and at
least nU —1, n(1 —U) -1, where U is a uniform [0, 1] random variable, and to
apply this observation in the induction proof. The rightmost inequality is a
Bonferroni inequality (see e.g. [22]) for the union of events.

The height H, can be studied via the inequalities of Theorem 3. In particu-
lar, probabilistic upper bounds for H, are easily obtained because the product
of k independent uniform random variables has a simple explicitly known
distribution. Unfortunately, since k will typically be of the order of log(n), the
inequalities of Theorem 3 are not strong enough to study the second term of
any asymptotic theory for H,, because about loglog(n) is lost in the process.
This is the price paid for the transition from H,'to Z,.

In Theorem 5 below, we obtain the announced upper bounds. We are
particularly careful in our estimation because the inequalities obtained there
will be useful to obtain at least a rough idea of the size of the second (i.e. the
loglog(n)) term. Lower bounds for H, follow by the careful application of
Theorems 1-2 on branching processes. They are presented in Theorems 6 and
7. Collecting all of this, we will prove the following result:

Theorem 4. Let H, be the height of a random binary search tree. Then

H

n

c log(n)

— 1 in probability

and ‘
E(H,)~clog(n)

2
where ¢=4.31107 ... is the solution of c log (?e) =1;¢c=22

Theorem 5. Let H, be the height of a random binary search tree on n nodes. For
k2log(n), n21,

(2log(n)* 2elog(n)\ 1
P(H,2k)< ~() .
log(n) k log(n)
nk!(l—k+l) n]/27tk(1—k+1)

282 : L. Devroye

Let ¢ be as in Theorem 4, and let d be defined by d =

c
30—0) Then,

lim lim sup P(H,2=c log(n)+d loglog (n) + M)=0.

M—-o© n-x

In particular, for all ¢>0,
lim P(H, =(c+¢) log(n))=0,
lim P (.E'L:C_loi@>
R @ loglog(n)
E ~cl
fim sup B ¢ log (%)
o loglog (n)

d+s)=0,

<d.

Proof of Theorem 5. From the upper bound in Theorem 3, and the fact that a

product of k independent uniform random variables is gamma (k) distributed
we see that

P(H,2 k) £2* P(G, <log (n)),

where G, is a gamma (k) random: variable. By partial integration of the gamma
density, it is not difficult to verify that for y>0,

o, y y: o y?
P(G“éy)=(k_!e)(1+k+1+(k+1)(k+2)+(k+1)(k+2)(k+3)+'")'

The right-hand-side is at most equal to

y
1——2—
k+1

at least when y<k+1. This upper bound is asymptotically optimal when y
=0(k), and k— oco. This is precisely the domain we are interested in, and it is
thus not necessary to look any further for better bounds. The first inequality of
Theorem 5 follows by replacing y by log(n), and by applying Stirling’s approxi-

k
mation to k! (i.e., k!~ (5)]/21rk).
e

Next, replace k by clog(n)+d loglog(n)+x where x is a large number at
" least equal to M. Then, in view of

klz (—If)k]/ 27k,

e

it is clear that, if we use C for some finite constant,

Analysis Height Trees 283

log(P(H, 2 k) <k log (2 2E™) —tog () ~Llog)+ C

2e dloglog (n)+
_klog() —klo (°cgl‘;i((’;)) x)—log(n)—«ztlog(k)+c

=(log(n)) (c log (2) —1) +(d loglog(n) + x) (log (2) 1)
—21loglog(n)+ C+o0(1)

=(loglog (n) (d —¢ —1) +x lc;c+ C+o(l)

2

1—
=x —=+C+o(l)

1_
<M Tc+ C+o(l).

The right-hand-side of this chain tends to — oo if we first let n tend to oo, and
then M. This concludes the second statement of Theorem 5. The only trouble-
some part left in the theorem concerns the statement about E(H,). Let us
rewrite the first inequality of the theorem as follows:

P(H,2K) <,
Note that for k=1log(n),

Preas 2 s () o

Define K =c log(n)+(d +¢) loglog (n) where ¢>0. Then,

E(H)= Y, P(H,2K

<K+ Y P(H,2k)
k=K+1

<K+) ¢

k=K+1

i

* (2log(n)\
-y
¢K+n§% 1<+1
¢K+1

)

=K+

=K +o0(1)

by the first part of the theorem. [

284 L. Devroye

Let us now get to work on the most difficult part, a lower bound for H,.
First, we will prove the simplest form, namely that H, must be at least c log(n).
Later, in Theorem 7, a more refined argument will be presented which will give
us an idea of how close H, is to clog(n). In the proof of Theorem 7, the
different parameters found in the proof of Theorem 6 will be optimized, and
without new ingredients in the proof, no better estimates of H, —clog(n) can
be obtained. Since this balancing of parameters is tedious and uninspiring,
Theorem 7 and its proof are put in a separate section which can be skipped
without loss. If the reader wants to see how Theorems 1, 2 are applied in the
derivation of a lower bound, he must of course take a close look at the proof
of Theorem 6, which is based in part upon a method developed in [6, 7].

Theorem 6. Let ¢ be as in Theorem 4, and let H, be the height of a random
binary search tree on n nodes. Then, for all ¢>0,

lim P(H,<(c—¢) log(n))=0.
Also,
lim inf —E—(FL)—?__ 1.
n-o Clog(n)

Proof of Theorem 6. We will use the shorthand notation k for |(c —As) log(n)].

This integer k needs to be decomposed as follows:
i

k=r+l(El_—r).

Here r and [are integers, which in Theorem 6 take fixed values. The value of

(kl—r) must also be integer. In Theorem 7, the values of r and ! will depend

upon n. The least crucial integer is r, so after having fixed [, the integer r can
be adjusted to make k —r a multiple of . For the time being, we can thus take
re[l, 21). The complete tree T, of Theorem 3 is split up as follows: consider a
complete top tree T, having 2" leaves. Each leaf is the root of a complete
subtree T, _,. From Theorem 3, we recall that

1+k
PH, 20 2P (2,2)

which in turn is at least equal to the probability that at least one of the
1+k
subtrees rooted at those leaves of T, for which V(p)=4~"has Z,_ 24" (T)

Assume for the time being that we have shown that the probability that for

1+k\ . e AT
one fixed subtree T, _,, Z,‘_rg4’(b) is at least equal to 1 —g. Then, if N 18
the number of paths in T, for which V(p)=4~", it is clear that for any integer S

P(H,zk)ZE(1-¢")2(1—¢") P(N 2s).

Analysis Height Trees 285

Consider now the following branching process: start with a population of size
1. The number of children of each element is 1 or 2 with equal probability.
Then, p=%, and o?<oo. Also, the extinction probability of this branching
rocess is 0. Thus, by Theorem 2, there exists a positive random variable W
such that the population size N after n iterations divided by (3/2)" tends in
distribution to W. In particular, for every >0, we can find a number ¢;>0
such that P(N =c,;(3/2)") is at least 1—0 for all n large enough. The branching
process is identified with our tree T, as follows. The root node has two
outgoing edges, with associated with it the pair of random variables (U, 1 —U)
where U is uniformly distributed on [0,1]. We “keep” the two substrees if
poth U and 1—U are at least 1, and keep only the subtree corresponding to
max (U, 1—U) otherwise. Both events have equal probability 3. This pruning
process is repeated for all nodes. After having considered r levels of nodes, we
end up with N surviving paths, each having the property that V(p)=24~". As
seen above, for all 6 >0, there exists ¢;>0 such that

P(H,2K)2(1—g#)(1-9)

If g<1 is fixed (not dependent upon n), then the lower bound is at least 1 —20
for all r large enough. Thus, it suffices to prove that for the first subtree T, _,,
there exists a fixed g smaller than 1.

To prove the existence of such a value of g, we apply the theory of
branching processes once again. Start with a population of size 1, the root of
T._,. This element has between 0 and 2! children, according to the following
rule: include all paths p of length [starting at the root, for which

V(p);e"l/ (‘_5). For each child, repeat the same process. If this branching
k—r

process survives, then it surely survives after generations, and the pro-

i k—
ducts of the values of V(p) along paths of length l—£=k—r in the original

tree are at least !
/. l ﬁi _ k—r
(F9) e

_(c —¢) log(n)

>e &'9

£
nc-e

n
2o (LH
n

1+k .
for all n large enough. Thus, P (Zk_,;4’ (—n—))gP (Branching process sur-
vives). From Theorem 1, we see that it if we can verify that for this branching
process, u> 1, then the probability of survival is a positive constant, which in
our case will not depend upon n. This would then conclude the proof of the

286 L. Devroye

first part of the theorem. But clearly, if U,, U,,... are iid. uniform [0, 1]
random variables, and G, is a gamma (/) random variable, then

1

&

1
p=2'P\ [Uze 2
i=1

J— .
C‘% V2nbel2l

i
Here we used Stirling’s approximation. By definition of ¢, the exponential term

is greater than (1+a)’ for some a>0 depending upon & Thus, for all I large
enough, u> 1. Choose such a fixed value for 1.

This leaves us with the statement about E(H,). Obviously,
E(H,)Z(c—¢)log(n) P(H,=(c—¢) log(n))~(c—¢) log(n)
for all ¢>0. This concludes the proof of Theorem 6. [J

4. A More Precise Lower Bound

The purpose of this section is to prove that for a random binary search tree,
H,—clog(n) is 0(]/ log(n) loglog(n)) in probability. This is essentially done by
a careful adjustment of the parameters in the proof of Theorem 6. We do not
claim that this is optimal. For example, an improvement of the inequality of

Theorem 2 for branching processes could possibly affect the size of the second
term in the lower bound. :

Theorem 7. Let ¢ be as in Theorem 5, and let ¢>0 be arbitrary. Then, for 4
random binary search tree with n nodes,

lim P(H, <c log(n) —(1+¢) K}/1og(n) loglog (n)) =0,

n— oo
where

(log(4) —1/c) log (3) -

K=2e) 0=/ 1082

Analysis Height Trees 287

Also,

lim inf E(H,) - clog(n)
n-o }/log(n) loglog(n)

Proof of Theorem 7. We will use the notation of the proof of Theorem 6. The
constant L is defined by

_1/ log(3/2)
4(1—-1/c)(log(4) —1/c) log(3)’
We will work with the following values for [and k:

I=|LY/log(n) loglog(n)],
k=|clog(n)—(1+¢) Kl/log (n) loglog(n)].

. -r . .
Furthermore, r is the unique integer in [ry, r,+!) for which 1s integer,

where
l log(Z)J
ro=11 .

log(3)

Let us recall first that if 1 —g is the survival probability of the first of the 2"
branching processes started at the leaves of T, then

P(H,zk)Z(1—g*®)(1-9).

We recall that 6>0 is arbitrary, and that c; >!O is a given function of ¢ only.
The inequality is valid for all r large enough i.e. for all n large enough. The
lower bound is 1 —d —o(1) if

3) log(g) » — o0
as n— oo. This 1s in turn satisfied if
2'log(q) = — 0.

The branching processes in the 2" subtrees T,_, are now defined in the
following manner: each element has between 0 and 2' descendants where a
descendant corresponds to a path of length I having

o)z (1+k 4,),"7,

n

We will call this event E. It is easy to see that for paths of length k in the
pruned tree T,, we have

1+k
V(P)>—n—

as required. For one of the individual branching processes in a subtree T, _,,
we apply the inequality of Theorem 2, which states that the probability of

288 L. Devroye

eventual survival 1 —gq is at least
2'p—1
21

where p is the probability of the event E. In particular, we see that

1—g=(1+o0(1)p

when 2'p— 0. But because log(g)< —(1 —g), this would also imply 2'log(g)—
— oo as required above. The remainder of the proof boils quite simply down to
a verification of the condition 2'p — c0. Note that

p=P (G,gl log(n)—log(1+k)—r log(4))

k—r

ap (G,gé (1 +a,,))

where G, is a gamma (/) random variable, and a, is a sequence of numbers
tending to O (this will be verified below). By an inequality for gamma random

variables, we have \

IA+a)\V 2 _Lsay
I . n n
sl .

(e(1+a,.))' 2 laven

¢ V2nl

Ny o1 1,
=(2_e e'?) e c"(1+a,)
V2nl

1 I(log(l +a,,)—% a_) ——;— log(l)

The exponent in the last expression is
I\ 1 5
la, (1 _E) ~2 loglog (n)+ O(la;)+ O(logloglog (n)).

After resubstitution of our value of I, we see that the exponent tends to co if

la 1

n

loglog(n) ~ 4(1—1/c)’

We can verify this quite easily: we start from

lim inf

and

Analysis Height Trees 289

l] /
loglog(n) loglog (n)

_log(l +k)+rlog(4)

_ log(m) log (n) 1

loglog (n) k—r

clog(n)
k —
]/m (log(n)—log(1+k)—r10g(4)—(—c—r)>

=L X :

loglog (n) log(n) _

(1+¢)K r

>Lx (. _Vlog(n) D (10g(4)—%)+o(1))

(1+9K Llog(3) 1
ng(c 108G (log(4)_2)+°(1))

log(3))
log(3/2)

(S g (°29))

(sinc.e §=kl)‘;‘-’é2) (log @) —%) x-2L)

(since r<LV/log(n) loglog (n)

1
Za1=1/0

!

when L is-as indicated at the outset of the proof. Similarly, it is trivial to show
that an=0(]/ loglog (n)/log(n)). This concludes the proof of the theorem. []

5. Multidimensional Trees

The results of this paper can be used in the analysis of the expected height of
some multidimensional data structures. The k —d tree [5] is a straightforward
generalization of the binary search tree for d-dimensional data. The difference
is that at each level of the tree a different coordinate is used for splitting a
subset of R? in two parts. For example, at even levels of a 2—d tree, cuts
perpendicular to the x-axis are made, and at odd levels, cuts perpendicular to
the y-axis are made. In general, we have a sequence d,, d,, ... where d; is the
index of the axis to be cut at the i-th level. Although this sequence is typically
1,2,...,d, 1,2,...,d, 1,2, ...,d, 1,2,..., there is no restriction whatever on it
for our analysis. One could thus have 1,1,1,1,... in which case a binary
search tree is obtained. Assume that the data consists of an i.i.d. sequence of d-
dimensional random vectors with the property that all marginal distributions

290 L. Devroye

are nonatomic (this is to avoid duplicates among some coordinate values).
Then for the first split, the random permutation model holds, as for the binary
search tree. For subsequent splits, one can verify that this random permutation
model is still valid regardless of which coordinate is cut. Thus, the height H,
has precisely the same distribution as in the one-dimensional case, and all
results given for the binary search tree remain valid. The same can be said if
the data consists of a randomly permuted sequence of n points in R? having
the property that there are no duplicates among the coordinate values.

The point quadtree in R? [12] generalizes the binary search tree in a
different way. Each data point is a node in a tree having 2¢ subtrees corre-
sponding to the quadrants formed by considering this data point as the new
origin. The process of inserting into point quadtrees is analogous to that used
in binary search trees. Search operations using point quadtrees are analyzed by
[4] and [23]. Because of the large branching factor, point quadtrees seem
ideally suited for parallel (multiprocessor) environments. For a survey of
quadtrees, see [31]. Under the iid. model given above for the k—d tree, the
height H, of the point quadtree has a distribution which depends upon the
distribution of the data points. For example, if the data points are uniformly
distributed on the diagonal of the unit hypercube of R? then H, is distributed
as for the binary search tree. In a sense this is the worst case, since the
branching factor (2% is of no help in making the tree flatter. For the sake of
simplicity, we will assume that the data points are ii.d. random vectors with
independent components, and that each component has a nonatomic distribu-
tion. But as far as the distribution of the depths of the nodes is concerned, this
is equivalent to assuming that the data points are uniformly distributed on the
unit hypercube of R% Thus, the root point (U,, ..., U,) splits the space into 2¢
quadrants, and the number of data points ending up in these quadrants is
multinomially distributed with parameter n—1 (for the total cardinality) and
probabilities U, U,...U,;, U, U,...U,_,(1-U,), etcetera. In other words, the
fundamental inequality of Theorem 3 remains valid because it was based upon
precisely this observation. However, in the definitions of V(p) and Z,, every
occurrence of one uniform random variable has to replaced by a product of d
independent uniform random vectors. For example, we have in the notation of
Theorem 3,

1+k
P(Zk; +

1 dk 1
)sP@, 2P (2,2;)s2P ([T Uz.),
n n i=1 n

where U,,... are iid. uniform [0,1] random variables. In the proofs of
Theorems 6 and 7, the parameters k, I, r can all formally be replaced by dk, d/,
dr. In particular, we see that for the quadtree with the independent component
model,

H

1
" log") =7 in probability,

and :
E(H,)

"'ﬂ, clog(n)

_L
==

Analysis ‘ Height Trees 291

In other words, the quadtree is about d times flatter than the binary search
tree. If flatness is measured in terms of the expected value of the depth of a
randomly picked node, computations much simpler than the ones given in this
paper show that the same is true, i.e. the expected depth is asymptotic to

glog(n) (versus 2log(n) for the random binary search tree). Thus, if searching

is done by applying d binary decisions for each node, we have a status quo. On
the other hand, if d parallel processors are used when moving down the tree, a
speed-up of about d can be expected over the random binary search tree, at
least if communication time between the parallel processors is ignored.

6. The Union-Find Tree

In this section we consider the height of a random tree which occurs in the
well-known tree-structured set-union algorithm (see e.g. [2], pp. 184-189, or
[33]). The algorithm is sometimes called the union-find algorithm and the
corresponding problem the equivalence or set union problem. In this data
structure, each element in 1,...,n has a parentpointer parent[i], 1<i<n. In-
itially, each element defines one singleton set, which is indicated by setting
parent[i]:=i. Sets with more than one element are organized as trees, and the
name or label of a set is the name of the root of the tree. The two operations
of interest are

Find(i): (returns the name of the set tp which i belongs)
ji=1 .
; WHILE parent[j]+j DO j:=parent[j];
RETURN(j)
Union(i, j): (union of sets rooted at i and j respectively)
parent[j]:=i.

The cost of a union is constant. Its contribution to the total time taken by
a sequence of k finds and m unions is proportional to m. The more interesting
contribution to the total time comes from the find operations. Here we equate
time with the number of comparisons “parent[j]+ j” in the WHILE statement.
The number of sets in the partition of 1, ..., n is nonincreasing. Thus, it makes
sense to analyze the time taken by a sequence union(find(x,), find(y,)), 1<i<n,
such that at the end of this sequence all points belong to the same set. A
sequence (x;, y;) is said to be legal if after i —1 iterations, find(x,) +find(y,). We
look at the shape of the final tree. This is important because the time required
for one find operation is bounded by the time required for one find operation
after the elements have all been put in the same set. In the structure of the
final tree, we distinguish between L,,, ..., L,,, the levels of elements 1,...,n
(the level of the root is defined as 0), and H,= max L, ,, the height of the tree.

15isn
Since these random variables are only determined by how v is distributed in
the union (u, v) operations, all that will be said below will be valid for the

following general situation:

nis

292 ' L. Devroye

At each iteration, choose (u, v) in such a way that u=+v and that both u and ,
v are uniformly distributed over all possible sets. (Note that we do not specify |
how x; and y; are picked within the selected sets.)

It is instructive to see how large the level of an individual element is, before
looking at the height of the tree. To do this, consider B,, 0=p<1, a Bernoulli
(p) random variable:

P(B,=1)=1—P(B,=0)=p.

It is clear that L,,,...,L,, are identically distributed random variables with
distribution equal to

M =

By (1)

i=2

where the Bernoulli random variables are independent. This follows from the
observation that whenever element 1 is in find(y,), its level increases by 1. The
level of element 1 remains unchanged when it is in find (x,).

Theorem 8. 1. E(L,,)=) 1/i~logn.
i=2

2. Var(L,,)~logn.
3. L,,/logn—1 in probability as n— .

4. (L,, —logn)/y/logn tends in distribution to a normal (0, 1) random variable.

Proof of Theorem 8. Part 1 is trivially true. For part 2, we observe that
Var(L,,) is equal to

\

Z": 1/i—1/i%).
i=2
This in turn is equal to log(n)+ O(1). For part 3, we need only show that
L, / i 1/i—1 in probability.
i=2
But by Chebyshev’s inequality, we have for all £¢>0,
P (L, - iz 1/i gsiz 1/i)

<Var(L,,)/(¢*(logn)?)
=o(l).

Part 4 follows without work from parts 1 and 2 by Lindeberg’s version of the
central limit theorem (see e.g. [10], pp. 290-291). This concludes the proof of
Theorem 8. [J

Let us now turn to the study of the height of the final tree. We will begin
with the following upper bound, which is once again the easy half of the
analysis.

Theorem 9. 1. For £>0, P(H,>(1+¢)logn)Scin/nt+ols+a—c ywhere ¢

1
=e'"2n and y is Euler’s constant.

Analysis Height Trees 293

2. If ¢, is any sequence of positive numbers tending to o0 as n-— oo, then
p(H,zelogn+g,)—0as n—co.
3. E(H,)<elogn+0(1).

proof of Theorem 9. For x>0,
P(L,,=x)<E(ete*) (t>0) (Jensen’s inequality)
n 1 . 1
] (Feer) e

—tx+ Z —(e‘ 1)
e [}

—tx+ (logn+7+)(e' 1)

A

1A

e
ce‘-— 1 e—tx+(logn)(e‘— 1)

Here we used a well-known inequality for the harmonic series (see e.g. [19,
20]). The second factor in the upper bound is minimized with respect to ¢ for
the value t=log(x/logn). Thus, for x=logn,

X
P(Lnl gx)§cm— 1 g~ logn+x—x log.x +x loglogn_

In particular, if we replace x by (1+¢)logn, then we obtain the inequality in
part 1, after observing that

P(Hngx)énP(Lnl—)

Part 2 of Theorem 9 follows from part 1: také e=e—1+39,, where 6,10. Note
that with this choice, ;

} (1+¢)(log(l+e)—1)~9,.

Thus, using the notation of part 2, with ¢,=9, logn,

e—1+4+0(1)
P(H"ge lOgn+8”)§m=0(l).
Part 3 can be shown as follows:
EH,)= j' PH,zx)dx
0

<elogn+ | P(H,>elogn+x)dx
0

=elogn+ | logn P(H,>(e+u)logn)du
0

et+u—1

<elogn+ | logh ———
=¢ & g g n(u+e)(log(l+%))

294 L. Devroye

—2u(u+e) 2u
<elogn+c®- 1lognj'c n Ze+u du (use log (1+))
0 28+u

+e _1
sesesetonr] (o (o 2ipe)
elogn+ce- ognj' L) du (use o2
=elogn+c®~!log n/log (n/c)
=elogn+0(1),

which was to be shown. This concludes the proof of Theorem 9. [J

In Theorem 9, we have shown that the expected height of the final tree is at
most e times the expected depth. Also, the probability that the height is much
larger than elogn is extremely small in view of the exponential bound glven 1n
part 1 of Theorem 9. We will now show that it is very unlikely that H,
smaller than (e —¢) log(n) for any ¢>0:

Theorem 10. For a random union-find tree with n elements, we have

H,
elog(n)

— 1 in probability

and
E(H,)~elog(n).

Proof of Theorem 10. In view of Theorem 9, we need only be concerned with
lower bounds here. Also, the lower bound for E(H,) follows from the con-
vergence in probability. It will be convenient to work with the associated
binary tree (abbreviated to ABT below). This tree is constructed as follows:
define all n elements as leaves. Internal nodes represent sets of more than one
element. When two sets with roots at u and v are merged, with parent v, then a
new internal node is defined having as left subtree the tree which represents the
set containing u, and as right subtree the tree containing v. This tree has
obviously n—1 internal nodes, one for each union operation. The tree formed
by the internal nodes is called the ABT.

Let us define the left-depth of a node as the number of left edges en-
countered on the path from the node to the root, and let the left-height of the
tree be the maximal left-depth. It is clear that if L, , is the left-height of the
ABT, and H, is the height of the original union-find tree, then

H,=1+L,_, (n22).

Furthermore, the ABT is distributed as a random binary search tree on nfl
nodes for the standard random permutation model. This can be seen 1B~
ductively: If a new first element is added, then it is merged with a randomly
picked external node in the ABT. Since this property characterizes random
binary search trees too, we see that the ABT on n—1 nodes is distributed as 2
random binary search tree on n—1 nodes. This observation is due to [21].

In the study of L, it is convenient to work with an infinite complete binar¥
tree T in which we assocxate with the edges, in level order and from left t©
right, random variables U, (1 -U,), U,, (1-U,), ... where the Us aré i1

Analysis Height Trees 295

uniform [0, 1] random variables. For a path p, we define its value V(p) as the
product of the uniform random variables encountered on the path. Often, we
will use this notation for the value of a node. It is understood that in such
cases, we mean the value of the path from the node to the root. Thus, p can be
used for a path from a node to the root, and for the node itself. We will also
use LH(p), H(p) for the left-height and the height of p. The starting point of the
analysis is the following fundamental inequality:

2
P(Lngh);P(max V()2)

p: LH(p)Z h n

p: H(p)Sh?
To see this, note that the sizes of the subtrees of the root are distributed as
[nU] and |n(1—U)] where U is a uniform [0, 1] random variable. These are
stochastically greater than nU —1 and n(1 —U) —1. If we define V(p)=1 for the
root, then the latter quantities can be rewritten as nUV(p)—1 and n(1 —U) V(p)
—1. If u, v are the children of the root, then)

nUV(p)—1=nV(@u)—1, n(1—=U)V(p)—1=nV(s)-1.

By induction, we obtain that jointly for all 2¢ nodes p at distance d from the
root, the sizes of the subtrees rooted at these nodes are stochastically greater
than nV(p)—d. Thus, the event [L,=h] is implied by the event that one of the
nodes at leftheight h is a root of a subtree of size at least equal to one. This
event is in turn implied by the event that one of the nodes p of leftheight h has
V)2 1)
rid of it by observing that the last event is implied by the event that
max V(p) 2(1 +h?)/n where the maximum is taken over all nodes p of leftheight
h and H(p) <h?. This concludes the proof of our starting inequality.

From here onwards, the proof follows the lines of the proof of Theorem 6.
Let r be a large but fixed integer, let ¢>0 be an arbitrarily small constant, let !
be another large fixed integer, and let h be defined as the largest multiple of !
not exceeding (e —¢) log(n). Let T, be the complete binary tree of Theorem 3.
Of its 2" leaves, we keep only those for which V(p)=4~". The infinite complete
binary trees rooted at these leaves will be called T(1), ..., T(N). Assume fur-
thermore that we have shown that the probability that T(1) has a node of

, , 5 1+h?
leftheight h, height <(h—r)* and V(p)2

. Since it is inconvenient to have H(p) in this condition, we get

4" is at least 1—g>0 where g

does not depend upon n and V, LH, H are all relative to the root of T(1). In
this case, we call T(1) “good”. Then, for arbitrary 6>0, there exists ¢;>0 such
that for r large enough,

N
P(L,Zh)=P (U T() is good)
i=1

2E(1—q%
2 (1 -8)(1—q"**)
>1-26.

296 L. Devroye

We have implicitly used the fact that for some node in a good tree T'(i),

1 h2 2
Vi 2 gy I
n n
LH@p)2h,

Hp)sr+(h—r?<h®

The tree T(1) is associated with a branching process in the following manner:
consider all nodes at leftheight I, and height <1? for which

I

e
Vip)ze 2.

These nodes form the first generation in the branching process. Repeat this
construction for each of these nodes in turn to construct the second generation,
and so forth. If this branching process survives, then it certainly survives after
h/l iterations, and T(1) must therefore have at least one node p with the
following properties:

_ N\t -
e }! h 2
V(p) g (e 5—5) _Z_ e-—;—_—z—(lto(l)) =elog(l -+-I|3)+rlog(4)—log(rx)__,1 +h 4r;
n

i

LHp2,

l=h;
h 2 2
H(p)’S‘TI Shlig(h—r)

We note in passing that all of this remains valid for n larger than some n,
depending upon I, 1, €.
Let us next look at the survival probability of the branching process. At
height H, leftheight I, we have H
(1)

nodes in T(1). Thus, the mean u for the branching process is
!

&

12 H
p=Y P\ [U;ze 72
H=1 Jj=1

where the U}’s are i.i.d. uniform [0, 1] random variables. If we use the notation
Gy for a gamma (H) random variable, then it is easily seen that

“ (H)
wm § (1) e (st
H=1 e——

2

12 H l/(e—¢/2) yH— 1
=z (l) I @
H=1 (4] ()'

e Vdy

Analysis Height Trees 297

l/(e—e/2) yl—l 12 HyH—l

=1 2 =D

I/(e—¢/2) I-1 @ -1 -] H-1
> -y___' (Z yH Z _y___) e ’dy
o (U=D!\Z (H-D! 4%, (H=-D!

l(e—¢/2)

yl—l (y12+1—l)
l—
£ -\ " @+1=)! dy

I \!'1 [\2+2-1 1
- n |l ¢ Z+2-D7
ot I (e__e_ *+2-n!

e \! 1

V2=l

v

2

ot
2

— 0

as |—»>o00. Now, choose ! large enough so that y>1. By Theorem 2, this fixes
the probability of survival 1—g>0. Going back over the proof, we see that this
allows us to fix a value of r. After having fixed r, we do not need to re-adjust
our original choice of I/, because all the estimates are valid for n=n, where
only n, is affected by the choices of r, . This concludes the proof of Theorem
0. O

}
Acknowledgements. 1 would like to thank all the referees’ for pointing out improvements in the
presentation and in one inequality in the proof of Theorem 7.

References

10.
11,

- Aho, AV, Hopcroft, J.E,, Ullman, J.D.: The design and analysis of computer élgorithms.

Reading, Mass.: Addison-Wesley 1975

. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data structures and algorithms. Reading, Mass.:

Addison-Wesley 1983

- Athreya, K.B., Ney, P.E.: Branching processes. Berlin-Heidelberg-New York: Springer 1972
- Bentley, J.L., Stanat, D.F.: Analysis of range searches in quad trees. Inf. Proc. Lett. 3, 170-173

(1975)

- Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun

ACM 18, 509-517 (1975)

. Biggins, J.D.: The first and last-birth problems for a multitype age-dependent branching

process. Adv. Appl. Probab. 8, 446-459 (1976)

- Biggins, J.D.: Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14, 630-636

(1977)

. Brown, G.G., Shubert, B.O.: On random binary trees. Math. Oper. Res. 9, 43-65 (1984)
. de Bruijn, N.G., Knuth, D.E., Rice, S.0.: The average height of planted plane trees. In: Read,

R.-C. (ed.) Graph Theory and Computing, pp. 15-22. New York: Academic Press 1972
Chow, Y.S., Teicher, H.: Probability theory. Berlin-Heidelberg-New York: Springer 1978
Devroye, L.: A note on the expected height of binary search trees. J. ACM 33, 489-498 (1986)

298

12.

13.

14.

1.
16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.

27.
28.

29.
30.
34,
32.

33.
34.

L. Devroye

Finkel, R.A,, Bentley, J.L.: Quad trees: a data structure for retrieval on composite keys. Acta
Inf. 4, 1-9 (1974)

Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput,
Syst. Sci. 25, 171-213 (1982)

Flajolet, P., Steyaert, J.M.: A branching process arising in dynamic hashing, trie searching and
polynomial factorization. Lect. Notes Comput. Sci., vol. 140, pp. 239-251. Berlin-Heidelberg-
New York: Springer 1982

Flajolet, P.: On the performance evaluation of extendible hashing and trie search. Acta Inf. 20
345-369 (1983)

Gonnet, G.H.: Unpublished handwritten letter. (1983)

Harris, T.E.: The theory of branching processes. Berlin-Heidelberg-New York: Springer 1963
Kemp, R.: On the stack size of regularly distributed binary trees. 6th ICALP Conference, held
at Udine, Italy, 1979

Knuth, D.E.: The art of computer programming, vol. 1. Fundamental algorithms, 2nd Ed.
Reading, Mass.: Addison-Wesley 1973

Knuth, D.E.: The art of computer programming, vol. 3. Sorting and searching. Reading, Mass.:
Addison-Wesley 1973

Knuth, D.E.,, Schonhage, A.: The expected linearity of a simple equivalence algorithm. Theor.
Comput. Sci. 6, 281-315 (1978)

Kounias, E.G.: Bounds for the probability of a union, with applications. Ann. Math. Statist. 39
2154-2158 (1968)

Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches in multidim-
ensional binary search trees and quad trees. Acta Inf. 9, 23-29 (1977)

Mendelson, H.: Analysis of extendible hashing. IEEE Trans. Software Eng. 8, 611-619 (1982)
Pittel, B.: Asymptotical growth of a class of random trees. Ann. Probab. 13, 414-427 (1985)
Pittel, B.: Paths in a random digital tree: limiting distriqutions. Adv. Appl. Probab. 18, 139-
155 (1986) '?

Rao, C.R.: Linear statistical inference gnd its applications. New York: John Wiley 1973
Regnier, M.: On the average height of trees in digital search and dynamic hashing. Inf. Process.
Lett. 13, 64-66 (1982)

Renyi, A, Szekeres, G.: On the height of trees. J. Aust. Math. Soc. 7, 497-507 (1967)

Robson, J.M.: The height of binary search trees. Aust. Comput. J. 11, 151-153 (1979)

Samet, H.: The quadtree and related hierarchical data structures. Comput. Surv. 16, 187-260
(1984)

Savage, I.R.: Probability inequalities of the Tchebycheff type. Res. Nat. Bur. Stand. 65, 211-222
(1961)

Standish, T.A.: Data structure techniques. Reading, Mass.: Addison-Wesley 1980

Stepanov, V.E.: On the distribution of the number of vertices in strata of a random tree.
Theory Probab. Appl. 14, 65-78 (1969)

Received May 10, 1985/January 8, 1987

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

