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A NOTE ON THE USEFULNESS OF SUIPERKERNELS
IN DENSITY ESTIMATION'

BY Luc DEVROYE

McGill University

We consider the Akaike-Parzen-Rosenblatt density estimate fnh
based upon any superkernel L (i .e ., an absolutely integrable function with
jL = 1, whose characteristic function is 1 on [- 1,1]), and compare it with
a kernel estimate gnh based upon an arbitrary kernel K . We show that for
a given subclass of analytic densities,

inf h
~Ilfnh-1Iinf sup lim sup ,

	

= 1,
L K n->oo infh Ef I gnh - f I

where h > 0 is the smoothing factor . Thus, asymptotically, the class of
superkernels is as good as any other class of kernels when certain analytic
densities are estimated . We also obtain exact asymptotic expressions for the
expected L, error of the kernel estimate when superkernels are used .

1. Introduction. In this paper, we consider the kernel estimate
1 n

fn(x)

	

Kh(x - Xi) ,
n i=1

where Kh(x) _ (1 /h)K(x/h ), h > 0, is the smoothing factor depending upon
n only, K, the kernel, is an absolutely integrable function with fK = 1 and
X1 , . . ., Xn are i .i .d. random variables with common density f on the real line
[Akaike (1.954), Rosenblatt (1956), Parzen (1962)] . Sometimes we will write
fn h to make the dependence upon h explicit . The expected L 1 error EEl I fn - f l
is a function of n, f, h and K. Of these factors, the user can only choose K
and h. The choices of h and K have led to extensive discussions, especially
data-dependent choices for h for fixed K. Where the choice of K is concerned,
we basically have little to go by when a small expected L 1 error is desired.
What is known is that for class s kernels [i.e ., symmetric kernels K for which
JK = 1, fx'K(x) dx = 0 for 1 < i <s, f IxI S IK(x)f dx <00 and fxsK(x) dx 0]
with even positive s,

inf liminfns/(2s+ 1>inf E I fnh - f I > c( K) > 0,
f n-oo

	

h

where c(K) depends upon K only [Devroye (1988a)] . This implies that our
choice of K implicitly limits the performance to about n _S /(2s + 1), regardless of
how smooth f is. If we do not want such limitations, we should really consider
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kernels with fx'K(x) dx = 0 for all i > 0 . These too may create implicit
limitations, but now they are of the order of g(n )/ ~, where g(n) is a slowly
varying function . An important subclass is the class of all superkernels L,
which are defined as symmetric absolutely integrable functions with fL = 1,
and whose characteristic function is 1 on an open neighborhood of the origin
[see, e.g ., Devroye and Gyorfi (1985) or Devroye (1988a)] . Superkernels do not
produce any performance limits, as we will see below . In L 2 studies, such
kernels have been known for a long time ; see, e.g., Watson and Leadbetter
(1963), Konakov (1972), Davis (1975, 1977) and Ibragimov and Khasminskii
(1982). Watson and Leadbetter obtained lower bounds for the expected square
error as a function of n and the density f only, uniformly over all kernels .
Davis showed that for a large class of densities, the Watson-Leadbetter lower
bounds can be attained in the limit up to a multiplicative constant by using the
kernel S (x) = sin(x)/n-x . Thus, for L2 performance, S is virtually asymptoti-
cally optimal .

Our main result is Theorem 5, which is stated in rough form in the
abstract. Theorem 5 implies that if we had an infallible oracle that would give
us for every n, K and f the best possible h, then we should look no further
than superkernels in our search for a kernel that is asymptotically optimal .
There are, however, three caveats . First of all, the optimality is only for all
densities that are smooth enough ; note that the characteristic function ~p for f
has to decrease basically at an exponential power rate . All those densities are
necessarily analytic . Second, the present analysis does not provide us with a
data-based method for selecting nearly optimal h for particular superkernels .
Third, choosing a superkernel for small sample sizes may be the wrong thing
to do. Somehow, we need more information about when the asymptotics really
start to count .

2. Smooth densities . Consider extremely smooth densities with expo-
nentially decaying characteristic functions . These densities are necessarily
analytic. Furthermore, it is possible to choose a kernel K such that the
expected L 1 error is O(/log n/n) [Devroye (1987)]. In fact, with superkernels
the best possible rate of convergence is solely determined by the density ;
unlike with class s kernels, the performance is thus no longer limited by the
kernel.

In Section 3, we derive simple asymptotic upper bounds for the expected L1
error. These allow us to obtain information about the best possible choice of h .
With an additional order restriction on the characteristic function, we show
that the bounds are in fact asymptotically of the right magnitude . The optimal
h is at least of the order 1/log n, but despite its huge size, the optimal
performance of the kernel estimate is rather sensitive to its choice . This is best
seen as follows . The variation term in the error is of the order of 1 / /iii, while
the bias term is of the order of exp( -1/h) or smaller . Naively summing the
ntwo terms gives us an upper bound for the expected L 1 error . Interestingly, if
we put h = 2/log n, then this sum is O(1/log n/n) + 0(1/ and in fact,
bias = o(variation) . However, if we put h = (2 + E)/log n for arbitrary small
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fixed E > 0, then the sum is 0(n -17(2 +£)), with variation = o(bias) . If any-
thing, it is better to underestimate h than to overestimate it,

When studying the bias of the error, it becomes somewhat difficult to use
the Taylor series expansion technique, while inequalities linking distances
between functions with distances between their Fourier transforms seem to be
of some help. However, something is lost in this transition, and the bounds
may be loose in some circumstances . Nevertheless, in Section 4, for smooth
densities, we will be able to obtain exact expressions for

inf EJ l fnh - fh

when a superkernel is used.
In Section 6, we look at other kernels and show that for the same subclass

of densities alluded to above, any kernel leads to an expected L 1 error that is
asymptotically not better than that for the superkernels studied here . Thus,
barring small sample situations, it is probably not interesting to look any
further for better kernels .

3. Upper bounds for the performance. In what follows, we say that a
function g is in L 1 if it is absolutely integrable . It is in M when there exists a
p > 1 such that j(1 + I x l °) lg(x)) dx <00 . It is easy to verify that M c L 1 , and
that for g E M, J[ < 00 . Also, for f, L E M and f, L > 0, we have

lim V f* Lh =

	

JL,
h~0

where from here on * denotes the convolution operator and f * L h denotes
f * (L h ) [see exercise 7.8 on page 130 of Devroye (1987)1 . Also, the left-hand
side integral is not less than the right-hand side [Devroye (1987) page 115] .

We define a superkernel L by the condition that it is a kernel (hence,
fiLl < 00 and fL = 1) with absolutely integrable Fourier transform (hence,
L is bounded), and with the properties that /i(t) _- 1 on [-1, 1] and h/i) < 1 off

[ - 1, 1]. Note that the interval [-1, 1] is chosen for convenience only . Super-
kernels necessarily have infinite support .

Often our kernels require an additional regularity condition, that is, they
should be strong approximate identities: A function K E L 1 is a strong
approximate identity if for all fE L 1 , limh o Kh * f = IfK at almost all x . By
an extension of the Lebesgue density theorem [Stein (1970) pages 62, 63] it
suffices that IK) is bounded from above by a unimodal integrable function .
Virtually all candidate kernels are thus strong approximate identities .

EXAMPLE 1 . Superkernels. Define the Fourier transform Ir r (t) = h_r, r](t),

which has as inverse the function rS (rx ), where r > 0 is a parameter. For
b > 0, the Fourier transform defined by mef ~1+2b * b * I'b has as inverse
b2(1 + 2b)S 2(bx)S((1 + 2b)x) . This Fourier transform is 1 on [-1,1] and is
0(x 3) as x -~ o . Thus, we have a superkernel . Also, it is in M. Inverses that
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decrease at an exponential power rate can be obtained by convolving 11+2b
with extremely smooth transforms .

To bound the L1 error, we compute bounds for the bias and the variation
terms separately in Lemmas 1 and 2 .

LEMMA 1 . Define '1)(u) = f , u I co(t) I dt and let a E (0,1] be fixed such that
jaf <00. If L is a superkernel, then

flf*Lh_f I < 2f min f(x),

PROOF.

fIf*Lh-fI =

2

	

l 1 ,l
<_ 2 f min f(x), ~~I h I I dx .

1

	

11
Combine this with the fact that for any positive constant a,

fmin(f(x),a)dx < al-a f f «

LEMMA 2 . Let f E M be a given density and let L M be a bounded kernel .
Then, i f f1z is the kernel estimate with kernel L and smoothing parameter
h -+ 0 as n -+ 00 , we have

Tf, ~ 1

/1
h

))
dx ~ 2'Tf~(~L)) 1-a lfa

2f ( f * Lh - f)+ < 2 f mint f(x), sup ~ f(y) - f * Lh(y) I) dx
y

2f min( f(x), 2~ fI(t)I ~pI(th)

	

~-1i) dx

nh Ef I fn - f * I'h

If also nh -~ oo and both L and L 2 are strong approximate identities, then

hm nhEI fn-f*LhI=
2

	

L2 .
n-~~

	

7T

PROOF . By boundedness, L2 E M when L E M. Thus, a fact stated at the
top of this section proves the first part of the lemma . The second part begins
with the pointwise estimate

nV/Ef~ n - f * Lh

and the upper bound tends to 7L2 at almost all x if L2 is a strong
approximate identity, Since we also have integral convergence, we are in a
position to apply an extended version of the Lebesgue dominated convergence

< IV*(f L2 >h <_ fV fL2 .



theorem. We can conclude Lemma 2 if we can show that for almost all x,

~/nh ~I fn - f * Lh I -~ ~/2/zr f * (L 2 ) h .

For this, we use a technique borrowed from Devroye and Gyorfi (1985, pages
90-93). Define 2(x) _ 2 = E( fn - f * Lh ) 2 , let c > 0 be a universal positive
constant, and let L* be an upper bound on the size of L. Then by Lemmas 8
and 9 on pages 90, 91 of Devroye and Gyorfi (1985), applied with a = 0, we
note that

Since nh
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EIf -f=Lhl-~~~a

lhf Ef I fnh -

cL*

nh

Next, at almost all x, since L and L 2 are strong approximate identities,

Qn = n ( f *(Lh )2 - ( f*Lh )2 )

_ ~h I ffL 2 + 0(1) - h(f + 0(1))2
1

00, we can conclude that for almost all x,

EI fn _ f* Ly~ I~ I 2 Y fIL
2

Tr nh

fJL 2N	
nh

REMARK 1 . Lemma 2 is applicable to superkernels since they are necessar-
ily bounded (recall that jk('I < 00) .

Armed with the two lemmas given previously, we can now give the first
result, an upper bound on the asymptotic performance with superkernels .

THEOREM 1 . Let fn be a kernel estimate with superkernel L . Assume
furthermore that L and L 2 are strong approximate identities and that f, L E M.
Define the (possibly infinite) constant

T =def sup{ItI : Igo(t)I * 0) .

If T <00, then

,~ fTf*(L2 ) l/T .~

If T = oo [hence I(u) > 0 for all u > 0], jf" <00 for some 0 < a < 1, co is
absolutely integrable [hence 1(u) < 00 for all u > 0] and 1/ ~ is rapidly
varying at infinity, that is, 1(cu)/1(u) -~ 0 as u - oo for all c > 1, then

1~ Ef Ifnh - / I ~ ( 1 + 0(1))	
~/

~2/
~~ /nh v f La, n
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where ha, n
is the unique solution o f the equation

J2/'r Ih/IL 2 =2If« ,

,-

~, h
Y	

l

	

t

	

1J
Without the rapid variation condition, we have

ifEJIffl h - fI~

	

/ z +o(1))
\ J/NJL2

PROOF . We begin with the second part . Let h* _ (1- )ha,
n,

where e > 0
is arbitrary. Then, by Lemma 2,

By Lemma 1,

Eflfk •

fI f_f*L h* I

of
l

f * Lh* I G

2ff"

o'I~I h l.rtI1ll

	

v l
1

1

i/nh «, n

dzirf7JrL + ( 1 )
i/nh«,n(1 - ~)

(rapid variation of 1/))

(definition of h a , n )

The proof of the second part of Theorem 1 now follows from the triangle
inequality applied to EE f Ifnh* - f I, and the arbitrary nature of e . Without the
rapid variation condition, we note that 1(1/h*) < t(1/h,),

an
and note that

the upper bounds for the bias and variation are asymptotically of the same
size . For the first part, we note that hfI - f *	 L i/TI = 0 since co(t) _- ~o(t)i(t/T )

for all t . By Lemma 2, infh IIfhn - fI < f * (L 2 ) i/T / VIn/T . 0

REMARK 2 . It is a simple exercise to prove that h a , n is uniquely defined
and that h «, n -~ 0 as n -~ oo and nh «, n -~ oo as n -~ 00 .

REMARK 3 . The heaviness of the tail of f is represented by the factor Jf'

in the bound. Assume for example that J(1 + IxV) f (x) dx <0o . Then

Jfa = J(1 + Ix IP)« f« X (1 + IxIP) adx

<_ ( f (1 + IxIP) f ~a(1(1 + Ix~p)-«/U -all

	

(Holder's inequality)

<00

when a > 1/(1 + p). In particular, if f E M, then f7 < oo .
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REMARK 4 . The stable densities . Consider the stable densities with charac-
teristic function cp(t) = exp(- ltla) for a E (0, 2] . We note that for a > 1 these
densities are in M, and the rapid variation condition of Theorem 1 is satisfied .
Furthermore, ~(u) N 2/(au a-le -ua ) as u -~ oo . We note that for a * 2, the
tails of f(x) drop off as lxi -(1+a). Thus, j af < oo when a > 1/(1 + a) . For
such a choice of a, simple computations show that h",n N (2(1 - a)/log n)l~a
and infh I'fnh - f I = 0 (hog 1' a n /n ) . These rates are much better than
those usually obtained in kernel density estimation with "standard" kernels .

REMARK 5 . The rapid variation condition does not imply however, that 1
has to decrease at an exponential rate or faster . Consider, for example,

~( u) N exp( - log ° u)

	

,

as u -~ oo, where p > 1 is a constant . Verify that h112, n = exp( -(1 - (1 /p) +
o(1))' 1 log'1 n) for p > 1 . Also, the conditions of Theorem 1 are satisfied .
Hence, inf h Ilfnh - f I = O(/exp(log" n)/n) . This shows that Theorem 1
gives a continuum of rates of the order of 1 / times a function which
increases at any rate slower than the polynomial .

REMARK 6 . Analytic densities . Analytic densities are characterized by char-
acteristic functions that are 0 (exp( - c l t l )) as I tI -i oo for some constant c
[Kawata (1972)] . Theorem 1 implies that if in addition the rapid variation
condition is satisfied, then the estimate of Theorem 1 holds, and that in any
case (i .e ., without the condition), we have EE jlfnh - f I = O(/log n/n) . The
rapid variation condition only allows us to explicitly pin down a good constant
in the upper bound, but it is by no means necessary for calculating rates . For
other estimates with analytic densities, we refer to Koronacki (1987), Gajek
(1989) or Devroye (1987, page 132 ; 1988a). Minimax results for analytic
densities can be found in Ibragimov and Khasminskii (1982) .

REMARK 7 . The upper bound shows that it is of interest to choose a
superkernel with small value of JL2 = (1/(2~r)) j~r 2 . By our scale restriction on
~/r, we always have JL2 > 1/. Thus, it is to our advantage to pick as close as
possible to the rectangular function on [-1, 1] with height 1. However, small
smooth tails are required so as to force L to be in M.

REMARK 8. The values h a , n represent nearly optimal choices of h for a
given density f. Obviously, since a can vary, they differ among each other ; yet,
as we will see, the variation in the values of h", n is modest with respect to a .
The values are greatly affected by the smoothness of f; from the definition, it
is apparent that ha , n is related to the inverse of ~, which in turn is a measure
of the smoothness of the density . See also the example of the stable family
previously mentioned. For a = 1/2, the value of ha , n is solely determined by
t and does not depend upon any tail factor such as jJ7 or j f "
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4. Rates of convergence with superkernels. In Theorem 1, we ob-
tained upper bounds for the expected L 1 error when a superkernel is used .
They can be employed whenever j/? < oo and Jkpf < 00 . What happens when
one of these conditions fails to hold would lead us astray ; after all, the benefits
of superkernels are only seen when f is smooth. For an important subclass of
densities, we can in fact get exact asymptotics that show that the upper
bounds of Theorem 1 are tight .

We recall the definitions of T and ha, n from Theorem 1 . We need yet
another parameter related to the distribution,

_

	

.

	

sups 1>u Icp(t)I
"def inf	

( t)~ dt .
This number will be required to be positive . The results of this section are
summarized in the following theorems :

THEOREM 2 . Let L E M be a superkernel and let fnh be the kernel estimate
with kernel L and smoothing parameter h . We assume that f E M. I f T < oo,

then
2

ihfEflfnh - fI ~

	

ten h<11fTJ' (Lh)2*f-(L~` *

THEOREM 3 . Let L E M be a superkernel, let L and L 2 be strong approxi-
mate identities, let > 0, let fnh be the kernel estimate with kernel L and
smoothing parameter h and assume that f E M. If T = oo and log (1/) is
rapidly varying at oo, then

2 V/JL2 J/7inf E I fn h -- f I
h

	

V nh 1/2, n

THEOREM 4 . Let L E M be a superkernel, let L and L2 be strong approxi-
mate identities, let > 0, let fnh be the kernel estimate with kernel L and
smoothing parameter h and assume that f E M. If T = oo, Jf" < oo for fixed
a E (0,1/2] and log (1/) is regularly varying at oo oforder 0 > 0, then

1/(29)

	

Y~nh«, n12(1-a)

	

+o(1) <	
IL2
	inf EI fnh - f I < 1+o(1) .

AI~ h

If T = oo, ff" < oo for all a E (0,1/2] and log(1/~) is regularly varying at oo

of order 0 > 0, then

inf Ef i
fnh - f I ,.,

	

2

f /7/

IL 2

~r ~nh o, n

where h o,n is the unique solution of the equation

f) 2

nh - ~(h)
.
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REMARK 9 . The conditions of rapid and regular variation of 1 can be
replaced by weaker conditions that are, however, somewhat more difficult to
formulate .

REMARK 10. The relative difficulty with Theorems 2-4 is due to the fact
that the bias in the error has to be sandwiched between matching expressions
that involve characteristic functions . However, in L 1 , we do not have some
sort of equivalent of Bessel's inequality . This forces us to opt for additional
conditions on f related to the regular or rapid variation of 1/~ and/or
log(1/~). Another approach, based on an exponential tail condition for cp", is
outlined in Devroye (1987, page 132) .

REMARK 11 . If log(1/~) is regularly varying at 00 of order 0 > 0, then by
well-known representation theorems (see, e.g., Seneta, 1976), we find that

I(t) = e -t eexP(o(logt))+0(1)

This implies that 1/~ is rapidly varying at oo

REMARK 12 . The

	

condition virtually implies that I I should decrease
exponentially quickly in the tails . Take, for example, a monotone cp l . Since
is absolutely continuous, we note that k I'(u) I /t (u) > . This implies that
I (u) - 1(0)e - u . This, and the monotonicity of 'p1, implies that I p(t) I _
0(e

_4t/2) as t -~ 00, and hence that our density f is analytic. These densities
are so smooth that they cannot have compact support . In fact [Kawata (1972)
pages 288, 435] lim sups _, I cp(t) I exp(I t I /logs t i) _ 00 for all compact support
densities .

REMARK 13 . For the stable distribution (cp(t) = exp( - I t Ia)) we have 0 = a
in Theorem 4, while = 0 for 0 < a < 1, = 1/2 for a = 1 and _ 00 for
a>1.

REMARK 14 . The most interesting special case of Theorem 4 occurs when
jaf < oo for all a E (0, 1). This is, for example, satisfied when there exist
positive a, b, c such that f (x) < a exp( - b Ix I' ). Note however that we cannot
in this case draw the same conclusion as in Theorem 3 since ha, n varies
with a .

REMARK 15. Small-tailed characteristic functions . Consider the characteris-
tic function (1- I t I)+, which corresponds to the Fejer-de la Vallee-Poussin
density

_ 1 sin(x/2) 2
1(x) _ ( 2w) x/2

Let Z be a random variable with this density, and let Y be an independent
random variable with distribution function F on (0,00) . Then the characteristic
function of Z/Y is given by cp(t) _ [(1- It/YI)+ . Thus, 'p inherits the tail of
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F in the t domain. To see this, note that
fp(ItI)f < 1 - F(t)'

For example, with F(x) = 1 - exp(1- ex), we obtain a characteristic function
whose tail is asymptotically not greater than exp(1 - e lt i) . With a superkernel,
for this example, we can obtain rates of convergence that are 0(~/log log n/n ) .

REMARK 16 . The ultimate kernel . If one shape of kernel is to be used for all
n, then the best kernel depends upon the density f . For densities with compact
support characteristic function, the kernel L should be chosen such that
infh ~ 1/ Tf ( L h ) 2 * f - (L h * f) 2 is minimal . The best pair (L, f) is that for
which this minimum is minimal . We recall from Devroye (1988a) that
infh IIfnh - f I ? (1 + o(1))/(8V) for any (L, f) pair however .

REMARK 17 . The normal density. The last part of Theorem 4 is applicable
to the normal density . To determine h 0 , n , we note first that I(1/h)
2 h exp(-1 /(2 h 2 )) as h ,~ 0 . It is easy to verify then that h 0, n N 1 / i/log n . We
conclude that

Also,

1 n
v Zi

'° i=1

infEllfnh - fI~

5. Proofs of Theorems 2 4.

EE
1 n
vv Zi

2 ~/log n ,.

'n- n l ii fL 2 .

PROOF OF THEOREM 2 . We begin with the upper bound . We write Zi for
Lh(x - Xi) - ELh(x - Xi ), so that 1Ifnh - f * Lj = I

	

1Zi/y I =def Yn'
Define oh(x) = Var{Z1} . In other words, oh(x) _ (L h )2 * f - ( L * f)2 . By the
central limit theorem, for fixed h, Yn tends in distribution to o-h(x)INI, where
N is a standard normal random variate . Following Devroye and Gyorfi (1985,
page 90), we see that there is a universal constant C such that

EIZ1 I 3

	

C ess supfZ1 I

	

CIILIl0
< (;	 <

- hcrh(x)l/

< 1/VaI'{Z1} -
i=1

For any h e (0,11/T], j If - f * Lhi = 0 because the characteristic functions of
f and f * Lh coincide [p(t) -- cp(t)+i(th) for ~ti s T since h < 1/T] . Thus, for
constant h <_ 1/T,

E{~ f Ifnh - ii) ~ f
'
-~'n(x) dx + fmin'oh(x), h~ ~x>J- I dx

1

= f ~~ ~h(x) dx + o(l),
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where we used the Lebesgue dominated convergence theorem, the fact that h
is constant and that fcrh(x) dx < 0°. The last fact requires the condition f E M.
Since a fixed h is certainly not better than the optimal h, we see that

lim sup c inf I fnh - f I <

	

lnf fV2/- Th(x) dx .
h

	

0<h<1/T

Let us now turn to the lower bound . The proof takes nine steps.

STEP 1 . Define h* as a given sequence satisfying

info Ifnh - fI "EIfnh * - f I'
h

STEP 2 . If h -- c, where c E (0,1/T], then

	

'

lim sup v EI fnh - f I < fV2/-?Uc ( x) dx <0O .

This was shown in the first part of the proof. We will use this later to exclude
the possibility that h* has a subsequence that converges to c (0,1/T ], or
that diverges .

STEP 3 . If h* -- 00 or h* -~ 0 along a subsequence, then along this subse-
quence,

Vfl fnh*_flfL

	

-300

Consider first h* -- o. We have

lim inf EI fnh* - f I >_ f I f - f * L h* I > lim inf sup I ~p ( t) I = 1 .
n - ' 00

	

n -~ 0°

	

t

Consider next h* -- 0 . Then i fJfhn - ff 00 by Theorem 16 on page 136
of Devroye and Gyorfi (1985) .

STEP 4 . If h* -- c > 1/T along a subsequence, then along this subse-
quence

To see this, note that

f I fnh* - f I ~ fIf_f*Lh*I

>_ sup(cp(t)I I1, ( th* ) - 1i -~ sup Icp(t)I (Ii(tc) - 1i > 0
t

	

t

by the uniform continuity of fr . Note that if the lower bound were zero, then
we would have i(t) -- 1 for all ~ ti < cT, which contradicts the definition of a
superkernel .

VfIfnh*_f I -~°° .
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STEP 5 . Steps 2 through 4 together imply that
0 < lim infh* - lim sup h* < 1/T .fl -*00

	

n_,oo

STEP 6 . If h -- c > 0, then

1 +o( 1)
~EI fnh - f I " ~~ I fnc - f 8

The last inequality follows from Remark 16 . The asymptotic equivalence can
be obtained by introducing the function g(x) = Lh(x) - L (x) and observing
that

Eflfn - fl- EJlf~-fl ~ Ef I fnh - fnc l < n -1/ 2 f /f * (g2)

n - 1/2ffg2 = o (1/~) ,

where we used a bound similar to Lemma 2, and the fact that fg2 -- 0 as
h -- c .

STEP 7 . Consider a subsequence of h* converging to c E (0,1/T]. Then

lim inf V [I fnh* - f I > lim infv [I fnc - f I .

STEP 8 . Assume that

V [I fflh* - f I --i a <

	

inf lim inf / [I fnc - f0<c_<1/T n-)00

along a given subsequence. Since lim inf h* > 0 and lim sup h* < 1/T along
this subsequence, the subsequence must have a further subsequence for which
h* -- c E (0, 1/T], and along this subsequence the lower bound of Step 7
applies. This leads to a contradiction, and we must conclude that

lim inf i inf EI fnh - f I = lim inf i [ I fn h* - f I

>

	

inf lim inf/ [I fnc - f I .0<c51/T n-)oo

STEP 9 . The lower bound can be made more precise as follows . Fix
C E (0, 1/T] . We note that lim infn E IYn 1 > o~(x )E f Nf . Thus, by Fatou's
lemma,

lim infv [I fnc - f I = lim inf

	

[I fnh - f * Lh I > EINt o!c(x) dx .
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Combining this with the bound of Step 8 shows that

lim inf / inf EI fnh - f I ?

	

inf V2/-z fo(x) dx .
n-oo

	

h

	

0<c<1/T

This concludes the proof of Theorem Z . E

Let us consider some general properties of
ha

, n . To do so, for a > 0,
0 < b < 1, we define the quantities Ra , b(n) as

1

	

l
R q, b ( n) =def 1nf max

	

, a b -
h>o

	

nh

	

h

The relationship with ha, n is obvious from its definition in Theorem 1 .

LEMMA 3. Assume that co is absolutely integrable, If log(1/) is rapidly
varying at oo, then for all a, a'> 0 and all 0 < b < b' < 1,

Ra , b(fl)
Jim
n-'°° Ra,b ( fl )

I f log is regularly varying of order 0 > 0 at oo, then

Ra , b(fl)

	

Ra , b(fl)1 < 11m inf	 < llm sup

	

<
n-~~ Ra~,b'(n

	

ii_

	

Ra',b'(n)

PROOF. The minimizing h in the definition of Ra b(n) is such that h - 0
as n -- oo. The function 1/~ is rapidly varying at 00 (Remark 11). Let E > 0
and b > 0 be arbitrary small positive numbers . We have

1

	

l 1 l1R¢,b(n)

	

ono max nh ,a?b I h I
J1

	

1

inf

	

1

	

~
max

	

, a~ b 0
h>o

	

nh

	

~
)( (1/h) ))

1(0)

1

	

~
• inf o

m~ nh '
a~b(0)( ( 1/h ) ))1 (0)

hno mom( nh ' a~a-a'(O)Ib'r
h 11

1

	

i+E,

•

	

o m~ nh '
a'I

l
b I h I ~ (n large enough)

t

	

1

1

	

(

	

lil+E

	

l+ E
inf max		~1•

	

Il + s h>o nh ~ h ~~

1

t/1 + s Ray ° a'(n)

b' i/(2e)

b
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In this inequality, we only used the rapid variation and monotonicity of 1/~ .
For the second half of the proof, we assume the regular variation of log (1 / )

the argument for the rapid variation case follows trivially from this, and will
be omitted. Also, for E > 0 as above, c =def (b'/(b(1- E)))110 . We have

1

	

1
R a , b ( n) = inf max

	

, a exp b log -
h>o

	

nh

	

h

1

	

1
< inf max	 , a exp bee(1 - E) log ( )))

h > o

	

nh

	

ch

(for all n large enough)
1

inf max
h>o

	

nh
b'

1

	

l1-S
<_ in f max nh , a' Ib'

1

I		(for all n large enough)
1

Ii-

_<

	

b

	

b'max 1, / 1_
b

inf max

	

h
, a

r

h >O

	

Cn

C
-max 1, ~1

s a'( n) •

(definition of c)

The coefficient in the upper bound is arbitrarily close to (b'/b)1"(2e~ by our
choice of b and E . o

LEMMA 4. Let fnh be the kernel estimate with bounded kernel L, and
assume that L and L 2 are strong approximate identities . Then if the density f
is arbitrary, h -- 0 and nh -- 00 as n -~ 00,

lim inf nh f [Ifnh - f
2 f
~ /? fL 2 .

PROOF. Assume first that h -- 0 and nh -- 00 . We introduce the notation
Bn = f * Lh - f and

2_
fh

_
f*Lh)2

=
(f*(Lh)2

1

	

_ (f*
2

~n

	

~( n

	

Lh) ) .
n

Both the bias Bn and the variance crn depend upon x . At almost all x, we have
f * Lh -- f and f * (L2)h -- f fL2 since L and L2 are strong approximate
identities . For such x, we see that on N f * (L 2 )h/(nh) N f fL2/(nh ) . By Lemma
9 on page 91 of Devroye and Gyorfi (1985), there exists a universal Berry-
Esseen type constant C such that

Bn l

	

CIILIh
~n

	

~np

	

<I fh - f I
Un

	

nh
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u) TdefIuIP{INI ~ IuIJ + 2 e
u 2 2_12 -

Ef N
-

u f >_
~r

	

~r

and N is a standard normal random variable. At almost all x, we have

lim inf nh EI fnh - f I ? fffL2 lim infp(IBn I/on ) >- ~/2/~r fffL2 .

Thus, by Fatou's lemma,

lim inf nh EI fnh - f I ? V2/~ fffL2 .

PROOF OF THEOREM 3 . From Theorem 1, we recall that, with A =def V 2/~

fifVfL2 and a -def 2f/7/(A1),

A

	

~(1/h)
inf EI fn h - f I - ( 1+o(1))infmax _-,2f/?
h

		

h

	

nh

	

~r

_ (A + o(1))Ba,1/2(n)

in the notation of Lemma 3 . This result uses the fact that 1/~ is rapidly
varying at oo . If h -- 0 and nh -- 00, then the lower bound of Lemma 4 is
applicable:

I fnh - f I ? ( A+o(1))/V .nh

Let 'q > 0 be so small that' =def inf1t1,1 + t (t) - 1 f > 0 . Then

EI fnh - f I
1 fi I * L h - f I (Jensen's inequality)

>- sup ( cp (t) ( (~li(th) - 1( >-

	

sup

	

(p(t)(
ct

	

ItI>(l+n)/h

>_ ~

	

kp(t)f dt= ~I((1 +r~)/h) .
ItI>(i+~)/h

If h remains bounded away from zero, then the last bound shows that
I'lnh - f t too remains bounded away from zero. The same is true if nh

remains bounded away from oo [see, e.g., Devroye (1987), pages 37, 38] . Let h*
be such that

fIfnhf* - I N inf EI fnh - f I
h

Clearly, by what we noted above, h* -- 0 and nh* -3 00 , With
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a' -def \/1 + j /A,

if EJ I fnh
h

-fl-~flfk•- fl

>_ (i + o(i))max
A

~nh* ( l h*
17

))

( A

	

r~
z (1 + 0(1)) ihf maxi nh

'

	

(1+
h )

	 A
~(	

1+ r~
+ 0(1)

l / 1 + r~	
Ii	

~f- r~
~((1	

+
X ihf maxi v nh

	

A1

	

1

A
= ~1 +

n
- + 0(1) Ra', l( n) .

The upper bound for infh ~IIfh n - f t divided by the lower bound does not
exceed

Ra,112(n)
%/1+17	-~ /1 + ii ,

Ra',1(n)
where we used Lemma 3 . This is as close to 1 as desired by our choice of r~ . U

PROOF OF THEOREM 4 . From Theorem 1, we have, with A as in the proof of
Theorem 3, a -def 2 f f

a/(A,T1-a),

inf

	

I fnh - f I < ( A + 0(1))Ra,l-a(n) .
h

With a' and ij as in the proof of Theorem 3, we also have

inf Eli fnh - f I > ( A/V1 + r~ + o(1))Ra,,l(n) .
h

The limit supremum of the upper bound divided by the lower bound does not
exceed

R a, l_a(n)

	

1 1/(2e)
1 + rj lim sup		~/1 +

	

,
n4~ R',1(fl) a

where we invoked Lemma 3. Now let r~ decrease to zero . The last statement of
Theorem 4 is proved in a similar manner . By taking both ij and a small
enough, we see that

inf EI fnh f I ~1a',1(1

By Lemma 3, this is also asymptotic to AR a , 1(n) for any positive a . U
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6. Optimality of superkernels . The main result of this section estab-
lishes the optimality of superkernels over all other kernels for a subclass of
densities whose characteristic function satisfies a monotonicity condition in
the tails. When we wish to compare the performance of superkernels in
general with that of other kernels, there are several issues . A realistic compari-
son should be based upon nonasymptotic results such as explicit inequalities
and the like. Without many additional regularity assumptions on f and gyp, this
is a rather messy undertaking . Instead, we proceed with an asymptotic com-
parison, which should be interpreted with the usual warnings. Two compar-
isons can be made, one between superkernels and other kernels, with the
understanding that the kernel does not vary with n, and one in which the
superkernel is fixed but the competitor is allowed to use any kernel of his
choice for any n . It turns out that there is not rough difference between these
methodologies for the extremely smooth densities considered in this note .
Recently, Hall and Marron (1988) showed that for very smooth densities,
nothing is gained by allowing K to vary with n (within a rich family of
kernels) when the performance is compared with that of the estimate based on
S (x) in an L2 setting. The same conclusion can be drawn from the work of
Davis (1975, 1977) . However, there is a slight gain over the kernel S for less
smooth densities, a case we will not consider here ; see, however, Cline (1990) .

When we compare superkernels among each other, Theorem 5 partially
indicates that we should try to minimize JL2 (or j~tt 2 ) . The bound given in
Theorem 5 depends upon the factor itjL2 . By Parseval's identity, this is
strictly greater than 1 for all superkernels. Equality is only attained in the
limit, for L =- S, but unfortunately, the limit kernel S is not in L1. This
seems to be a case in which there is no best element, since the winner is a limit
of elements from the family of superkernels. The recommendation is to take cli
rectangular with two smooth tails added on so as to make the tails of L small.
The size of these tails has to be determined from nonasymptotic considera-
tions, perhaps via some data-based rule .

THEOREM 5 . Let L E M be a superkernel, let L and L 2 be strong approxi-
mate identities, let > 0, let fnh be the kernel estimate with kernel L and
smoothing parameter h and assume that f E M, that Ico I is monotonically ,~ ,
and that T = oc, Jf' <00 for some a E (0,1/2], and log(1/~) is regularly
varying at oc of order 0 > 0. Assume that gnh is the kernel estimate with
arbitrary bounded kernel K such that K and K 2 are strong approximate
identities. Then

infh
JI

	 fnh- flim sup ,

	

< (1 - a ) -1/(2B) ,~
fL2 .

fl -*00 lnfh ~jI gnh - f
If log(1/~) is rapidly varying, or i f log(1/~) is regularly varying o f order
0 > 0, while at the same time ff" < 00 for all a E (0,1/2], then

lnfh~JI fnh-f Ihm sup . < zr L2 .
n--*00 lnfh ~jI gnh - f
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PROOF. From Theorem 1,

lim sup Vflh a, n inf Eli fnh - f
n~~

	

h

In other words,

inf EI fnh _II < ( A + o(1))Ra,i-a(n), '
h

where a =def 2 j f "/(Air 1-"), and R is as defined in Lemma 3 . Consider next
the estimate gnh . Observe that if v E (0,1) and sup ItI < z 1 - (t)i = v, then

1

	

2

	

1 z 2

	

1

2iT

	

2iT _' > rr z(1 - v)2 .z
We have

Ef I fnh - f

fK2 =

f

IT
vi? fv -def A.

•

	

sup ~ cp ( t ) ~ ~ 1 - ~ (th ) ~ ( i/i is the Fourier transform of K )
t

sup I 1- !i(th)I
Itl <_z/h

•

	

(z/h)IsupIl - /i(t)I
Itl_<z

-def vo(z/h)I

•

	

U

l
IP~TfJ x2/1 - U) 2 ~ZI

l

	

1

•

	

U
l

~~'?flx2/(1 - U) 2h
1
' .

Recalling the lower bound of Lemma 4 and using arguments as in the proof
of Theorem 3, we see that, if a' =aef v~VTrJK2 /(A(1 - v)) and B =def
V2/1rf7VfK2 ,

B+0(1)
lhf EEf lgnh - f I >- inf max	nh ' U~ t

	

v)2h

1

	

i
.1K2

	

1

>_ (B + 0(1)) inf max nh
' U~I' (1-v)2 h

_ (B + 0(1)) inf max
(1 - v) ' U~l(1/h)

n

	

Inh iTfK2

	

B

B(1 - v) h
nf m~	 a' ~

(
i - ))

~~IK 2

-	 a , , l( n )'
7T
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where we used the notation of Lemma 3 . The theorem is proved if we can
bound the limit supremum of the ratio

A.Ra , I _a(n)

	

\/ITJL2 Ra,1 - a( n)

- v)/T)Ra- i(n)

	

(1- v)Ra-,i(n)

But by Lemma 3, this does not exceed

/i.rfL2

	

-1 (2e)(1-a)
(1-u)

The first part of Theorem 5 follows from our arbitrary choice of v . The last
part is obtained from this either by letting a tend to zero, or by letting 0 tend
to 0O . o

7. Data-based choice for h . With superkernels, it seems particularly
challenging to derive a data-based method for the selection of a nearly optimal
h . This question is even more pressing here since, as we have seen, the
estimate is extremely sensitive to overestimation of h . Furthermore, relative
stability inequalities that are so handy in the study of the behavior of
data-based smoothing factors [Wand (1989), Hall and Wand (1988), Devroye
(1989)] tell us that fIf,z - f I oscillates about its mean with deviations that are
of the order of 1/ ~ . In fact, the probability that the difference exceeds e is
not more than 2 exp( - n e 2/(32f 21K1)) for any kernel K, any f, h and n
[Devroye (1988b)] . To make this less than a negative power of n, it is
necessary to take e of the order of log n/n, which is larger than the errors
that we are working with for extremely smooth densities . In an L2 context,
Hall and Marron (1988) encountered similar problems and had to exclude
extremely smooth densities from their analysis of the asymptotic optimality of
the L2 cross-validation method for picking h .
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