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ON THE NORTON-STRAHLER NUMBER FOR RANDOM TRIES (*)
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Abstract . - We consider random tries constructed from it i.i.d. sequences of independent Bernoulli
(p) random variables. 0 C p C 1 . Ve study the Norton-Strahler nutather H,, , and show that
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Resume . -- (fin !iudie des arhres alecttoires du fvpe K trie zonstruits a parrir de ii. suites
independat tes de variables ahatoires Bernoulli (p :) a~ 0 < p < 1 . On prouve que
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en probabilite, nip H„ est le nonzb a de Norton-Strahler.

INTRODUCTION

In 1960, Fredkin [9] coined the term trie for an efficient data structure
to store and retrieve strings . These were further developed and modified
by Knuth 1.41, Larson [16], Fagin, Nievergelt, Pippenger and Strong [6],
Litwia [17], Aho, Hoperoft and Ullinn [1] and others. The tries considered
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here are constructed from n independent infinite binary strings 1, . . . , X,~ .
Each string defines an infinite path in a binary tree : a 0 forces a move to
the left, and a I forces a move to the right . An infinite p-trie is a random
binary tree obtained by highlighting n infinite paths (from the root down) .
These paths are independent and are described by independent, identically
distributed (i .Ld.) sequences of Bernoulli (p) random variables, 0 C p C 1 .
For example, Figure 1 shows an infinite .p-trie built from the infinite strings
01001 . . . , 01011 . . . , 10011 . . . , 10100 . . . and 11100 . . . . The tree is now
pruned so that it has just n leaves at the n representative nodes (e.g ., see
Fig. 2). That is, the finite p-trie is the infinite p-trie maximally trimmed so
that each of the n infinite paths is finite and visits at least one node not
visited by any other path (that node is necessarily a leaf of the future p-trie) .
Observe that no representative node is allowed to be an ancestor of any other
representative node . This implies that every internal (non-leaf) node has at
least two leaves in its collection of descendants .

Originally used to classify river systems by Norton [II] and Strahler [241,
the Norton-Strahier number has also been applied to binary trees . Let u be a

01001 .. .

	

01011 .. .

Figure 2 . -- The -trie is a trimmed-down version of the infinite
p-trle in which the strings are associated with the leaves .

Figure . . - An infinite p-trig .

∎ a
∎ a

Intormatique theorique et ApplicationslTheoretical Informatics and Applications



node i n a binary tree . Let IuJ be the number of nodes i n the subtree rooted
at n (with u included) and let the Horton-Strahler number S. ! be defined by

D

rriax { S~, , S7} +

where I is the indicator function . Note that leaves u have S 4` = 1, and that
internal nodes u with one proper child v have S = S z , .

vol . 30, n° 5, 1996

ON TIE HORTON. STRANLER NUMBER FOR RANDOM TREES

	

445

if JuJ= 0,
if u J ? 1 and u has

(possibility-nonexistent)

children v and w,

0

Figure 3 . - A binary tree with Horton-Strahler labelling .

In general, let HH be the Horton-Sfrahier number of the root of a binary
tree with n' nodes . For a chain-shaped tree, H, 1 . For a complete tree
with ft full levels and 2 k - 1 nodes, we have .£ „ - f;. A little thought
shows that n C loge it -- 1 .

The Morton-Strahler number arises in computer science because of its
relationship to expression evaluation . In a computer, an arithmetic expression
is evaluated by micro--operations using registers . To facilitate this process, the
expression is stored as an expression tree with the operators in the internal
nodes and the operands in the external nodes . The arithmetic expression is
evaluated by traversing the corresponding tree. In 1958, Ershov [5] showed
that by always traversing the child node with the lower Norton-Sfrahier
number first, the corresponding register use is minimal (note however that
this does not minimize time) . Furthermore, the minimum number of registers
required to evaluate an expression tree with root a is exactly S-~~ + 1 .
As expression evaluation is a special type of postorder traversal, the same
paradigm shows that the minimum stack size required for a postorder traversal
of a binary tree is S, -1 I (e.g ., see Francon [8f } . In fact, the Norton-Strahler
number occurs in almost every field involving some kind of natural branching
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pattern . More recently, the Horton-Strahler number has been used to draw
trees by Viennot, Eyrolles, Janet' and Arques [29] and I ruszewski [15] .
Viennot [28] provides a thorough overview . See also Vauchaussade de
Chaumont [26] and Vauchaussade de Chaurnont and Viennot [27] .

The properties of the Horton-Strahler number have only been studies for
one model of random binary tree, equiprobable binary trees (EBT) . These
are random binary trees with m nodes drawn uniformly and at random
from all possible rooted binary trees with ii. nodes . Let H,~ be the Horton-
Strahier number of a random EBT with n nodes so that EH and Var H, }
are the corresponding expected value and variance . It is well-known (see,
e.g ., Flajolet ., .1 aoult and Vuillemin [7], .emp [13], Meir and Moon [18],
Mei r, Moon and Pounder [19], Moon [20], De vroye and ruszew ski [4],
and Prodinger [23]} that

EH

	

log, 'n

	

and

	

Var{H17 } = 0(1) .

Viennot et at. [29] introduced the notion of corresponding ramification matrix .
Penaud [21] probed their conjecture on the structure of the ramification
matrix for EBTs . Viennot et al. [29] experimentally studied the ramification
matrix for random binary search trees. Vanni menus and Viennot [25]
experimentally studied the ramification matrix for "injection patterns" .

In tree-drawing applications, one needs a family of trees with one or
more parameters so that the resulting trees cover a sufficiently wide range
of shapes. One such family is the family of tries with parameter p . As H„
varies with p, the parameter p may be used to control the "bushiness" and
elongation of the drawn trees . For example, Argues et al . [2] visualized tries
as botanical trees . It would be desirable to have simple' two- and multi-
parameter families as well, for added flexibility . These may be obtained
by considering Marl ovian tries, in which the i .i .d. Bernoulli sequences are
replaced by Markovian sequences of random hits (see, e .g . ? Jacquet and
Szpankowski [12]) . The study of the Horton-Strahler number for this moel
i s not attempted here .

We first define two tree metrics, the Balance number and the Fill level,
which serve as deterministic upper and lower bounds for the Horton-Strahier
number. We then derive the upper and lower bounds respectively of these two
metrics and show that they converge to the same value, thereby squeezing
Horton-Str abler umber between them .
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THE BALANCE NUMBER

we first define an infinite trio T* as the infinite complete binary tree . A
position of a node in T* i s addressed by two integers, (i,1) , where I is the
level number I ~ 0), and D C i C 2~ -- 1 is an integer indicating the node
at level I. For example, the root is at level o, so i = Z = 0 for the root . The
integer i when expanded into I bits describes the path from the root to the
node (o forces a left turn, 1 forces a right turn). Let i' denote the number
of one bits in the last Z bits of i .

If we take an i .i.d. sequence of Bernoulli (p) random variables, say
'1 , Z2 , Z3, . . . and write the bits backwards to form integers, then we obtain

the integers

Z1 +2 1 Z2 +2 2 Z2 + •- .

These are precisely the integers visited on the path from the root by our
sequence. At level o, we visit 0 . At level 1, Z1, at level 2, Zl + 2 1 Z2, and
so forth. When we refer to node (i, I), and i. ? 2, we are in fact referring
to i mod 2',I) . 'Wherefore, we allow such references modulo 2' .

The probability that a random Li .d. sequence of Bernoulli (p) random
variables carves out a path that reaches ( i, t) ~is c j . j --- pI l 1 (1- p) 1 k 1 f . ~ ~ We
call this the probability of node (i, 1) . For every node (i,1) we record its
cardinality C,1, the number of the n strings X1, . . .,X,1 that go through it,
i.e , those strings that have in their first I bits the integer i written backwards .
If i f ' = k s then C - 1 is binomial (n,p'(1 ' -- p)

x- ~"
) . The sibling of a node

(i, l) is (i i' , L) where i' and i differ in the last bit only . We define the Balance
number of (i, I) as

vol . 30, -n ° 5, [996
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D 1 .I I[1 <C, 6 .

where (i, denotes (i mod 2', j) . The Balance number B of the p-trie is

~~ = sup ,~

where the supremum is only over those nodes (i,1) that are in the p-trio. For
example, Figure 4 shows our trie with the edges labelled by the indicator
function I[ 1 ~ C <c 1.j and the nodes labelled by Balance number .

We note that since nodes with no siblings have the same Balance numbers
as their parents, the finite and infinite p--tries (and the corresponding Patricia
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d

Figure 4, The tile with Balance numbers .

tree -- a Patricia tree is a trie in which all internal nodes with one child
are removed and recursively replaced by that sole child) all have the same
Balance number .
We now show the following upper bound on B, x

THEOREM 1 : or Q < p C an

	

> O,

urn P{B,~>(l+e)logtm}=o .
ram

	

p

Prooft The nodes are separated into three categories :
w

A = (i, 1 ) : r qj,1 ? i ~}

B = {(i,1) . n~r' r < n q r .1 C r1."

C

		

-~`{(i,i) ; nq j C n .

Let A0 be the event that for all (i,1) E A, I ~ I , G,1 C OI , if and
only if

	

C qjj . For p C 1 we will see in Lemma 1 that, if Aoj is the~'~ .
complement of A0,

P{A}-0 .Q •

On any path, the number of nodes that belong to B is not more than
2 + 2e log . . n (assuming still p < l , then paths of the form ( . . .000 . . .)
maximize the path length) . Finally, let B* be the subset of nodes in B with
at least one child in ' . -'tee show in Lemma 2 that

1
P{ (z,t)EB* :C,1>M}-- o

	

f

	

~I-- - .

	

(I)
e
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Collecting all this, we note that for any (i,1) , with probability tending to one,

f

	

( 3 ) on path from (i, l ) to root,
B,, cM .- .. (2+2logi n+i_r

	

(rn,,j) E A, qmj C gnz'j

(2)

As any path visits B*, and every node of B * has cardinal i ty C with
probability tending to one, the contribution to Bx .1 from all nodes below that
node of B* is C 1. Observe that the lastt quantity of (2) is maximized by
choosing i with binary expansion (111 . . . } .

Then we must have, for any (m, ) E A on the path to (i,1 ), gyp" z

or

	

, 1 - e) tog t ii . Therefore, as we may take M = 1 + i ,C ~ [
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Thus we will have shown that

1'
log ~

su B > (1+2~	 log z n --.~p

	

to I

for al l e > o. 0

We are left with two technical lemmas .

LEMMA 1 : P{A}~ - o .

'roof: Take (i, 1) E A and let (i*,1*) denote its parent (note : 1 * _ 1 -- 1,
i* = i nod 2 1*) . Given C41+, ,we know that C j 1 is binomial (G+1, ~ .1 - p
or binomial (C .1 • , p) depending upon whether its is left or right child .

Now, if q i < qj',r

[Ci,, ~ Ci .i] = [c1,i ~ ci . -

1
= [C1 ~ Ci.,i'1

[c1.1

	

vci .i . ~
1

2
rr ∎



450

	

L, DEVROYE, P. KRUSZEWSKI

Thus, by He effding's inequality [10],

1
P {G ,r ~ c1',1 I c .r*

}
C exp --- 2 - --- p ~

M

We argue similarly for q ? r > q;' j , [C1 r

	

C1 . . r ], and note that

'
i 11
,~

C
i',

1

s qi.j C 4
j

',r
or

	

C ~ er z~

iLC .i ~

	

'> q:' .I

as nqj : r . ~ m because (i,1) E A. Thus, by Goole's inequality,

LEMMA

det

2E
&,~.

	

(where
o

8,
1

= 2(1 - qj4,( . + q . t5)'
C 2e ( "'

~ 2e' 1_) '

C7 , ~ q1`< qj' ;t

U

	

or
(x.I)Ef

	

CJ

	

~ Ci',,, qj,l > qj',j

Clearly, IAI is not more than the number of leaves in the tree pruned to
A times the height of A . But as the leaves are disjoint, their probabilities
cannot sum to more than one, and each individual probability is at least
n.-(l) , the number is not more than n1 .~ L The height of A is not more
than 1 + log . 72, by a trivial argument. Thus, (3) is not larger than

2(1 +to _.? _. n nl_~~ e~ (I-p

P sup (J ,> >
14, (i,1)EB

1--c) n

) 2C;* , 1 *

r*

<

1
o

	

for M~1 + --- .
6

(3)

Proof' First we count the number of nodes in J3*, Nearly, for any node
in B*, nqj > n and nq;p jp C m because one of its children must be
in C . Let '* be the collection of all the rightmost ("p") children of nodes
in B* (i .e., all nodes in C1 have probability p times that of their parent in
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B*). Note that the nodes in '* are disjoint, hence their probabilities sum
to att most one . But for (i,1) E C4,

or qz_ j > p/ri1 + . Therefore, IC* 7z_(l '~ p C 1 . Thus, 1B41

	

fl'/P. Fix
(i,i) E B* . Recall that qj,j C 1/pn1 . Then

n
P {C1,1 > M} C

	

'~
_

	

(q ,r) (1 - qj j)
.J > I1 •I

C ~

	

m ~
rrt (q,,)(1+

	

xngj.r + ( q .r ) + . . .)

(where 7TH = LM + 1])
1
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for n large enough. Thus

C ('frgj)17J
1	nq~ .r

1

	

1
- (pnc)1fl

	

I
Ann

2
'"" ~~~Z4 ~ r1L

sup 'i>

	

C

	

C
(iJ)EB

	

j - (p,')ffl -

for all m large enough . This tends to zero i f em > 1 + e . That is, i '
rn > 1 + 1/c . This holds if

	

= 1 + 1/c . D

We can now derive the result in Theorem 1 for all p e (0,1)

COROLLARY 1 : For all e > 0, o C p C 1,

liizi P Bra > (1 + 4) log;	x	 "

	

= D .

Proof.' We note that for p - 1/2, the same proof works throughout, except
far the following. From (2), regardless of whether Lemma 1 holds or not,

B,,1

	

M + 2 -+- ` e log.2 7z + (1 ---. E) loge rt

1
C1+--+(1+e)1o2n. .
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So, we need not bother with (2) nor an extension of Lemma l . In the proof
of Lemma 2, the fact that p C 1/2 was not used. We thus see that for all
e> Q, O C p C l.,

	

.

lim P Bn > (1 + e) log	1	~z = o. 0
fl-400

	

.a»n (p .1 - r)

THE FILL LEVEL

The Fill level or saturation level of a binary tree is the deepest level I
in the tree such that all possible 2' nodes at that level exist . For example,
the trie of Figure 2 has Fill level 2. In 1992,.Devroye [3] showed that for
random Patricia trees constructed from n i .i.d . sequences of independent
equiprobable bits and Fill level ',~ that

',~ --loge n

log2 log ii

almost surely. We let . '~, . be the Fill level, of a p-trie with n strings and
show the following lower bound --- the short proof is included here for
completeness . Far a much larger class of random tries, . '., 1 was studied by
Pittel [22], whose results imply the hound given below .

THEOREM 2: For & > p and U C p C 1,

liixi P{F, . C (1- e) log	t	
fl-+00 n»iti (F .1"'A~

Equivalently, by B oole' s inequality, . we have

0

2 ' - 1
p '„ C I C l'

	

mmn

	

1, o~

	

P{ J1 r = 4}
a-U

2' max P{G .r O} = 2'(l - miii qi
0 iC 2'-1

	

\

	

0Ci~2~--1

C

	

2~ 1 --~ j) fl

	

c 2~ e

	

' .
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0 .

Proo f . Without loss of generality, we assume that p C 1/2 . We note that

1E



This tends towards o with ra if we take 1

	

(1 - e ) log m/ log (l/p) for
any > 0. 0

It is equally easy to show that i n fact F,~ / log	 ii -} 1 in probability
(see

	

uszewski [251 and Corollary 2 below] .

THE HORTON-STRAHLE t NUMBER

We introduce another metric, related to the Balance number . For a node
u iii a binary tree, we set
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if

Illax(B+ j[It'I51tL'll~ #' + IUwISItII) if

Juf = 0,

f kLI~i and
u has children

v and w,

(see Fief. 5). We call 3u the alternate Balance slumber of n.. It is easy to see
that B = 1 for all leaves u . If f, i is the Balance number of any binary
tree with root u, then B,1 = D because B is the maximum number of 1's
(from the I(s) along any path i n the tree. Note however that the Balance
number of individual nodes -- the B. 1's in the second section -- are not

equal to the quantities B .

vol. 30, n° 5, 1996

0

Figure 5. -- Alternate Balance number labelling .

We note that the Balance number provides an upper bound on the
Norton-Strah i er number.

LEMMA : : For each binary trig= with root u,

	

C . 3:

Proof.- For a particular tree, this follows by induction can h, the height
of a node (distance from its furthest descendant leaf) . At leaves u,
S r, =

	

= 1 . Assume that the assertion holds for all nodes of height

0
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less than h. At height It we take a node a with children v and w . We
have S, C B., Sz~,

	

Bbar assumption. If S t ~ -= Sfl,, then, assuming
lvI C IwI, we have B., ~ B4 -+- 1 ~ S~, --- 1 = S u . If S,~

	

S1C., then.
S.~ = niaxSz,, 5,~, } C inax .B , B..) C B.~, and we are done . 0

We observe that the Pill level provides a lower bound for the iorton-
Strahlei number .

LEMt 4: For each binary tree with root u, Su ~ F, .

Proof: Trivial. 0
We conclude the following tight bound o the Morton-rtrahier number

H,1 for 7-tries .

and

B,1
log n

F,1
log n

1

1

THEOREM 3 : or a p-trice with n strings,

1
log,

	

log -	}
in probability .

Proof: The upper bound follows from Lemma 3 and Corollary 1 . The
lower boundd follows from Lenu a 4 and Theorem 2 . a

This theorem together with Lemmas 3 and 4 allow us to conclude the
following .

COROLLARY 2: For a p-trio with n strings,

og
in pro6abiii.ty

in probabil2ty .

F inally, we note that as -tries and their corresponding patizcia trees have
the same Norton-Strahier numbers, our boundd also hold for Patricia trees .
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