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ON THE HORTON-STRAHLER NUMBER FOR RANDOM TRIES (*)

by L. Devrove (') and P. Kruszewskr (%)
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Abstract. - We consider random tries constructed from n Li.d. sequences of independent Bernoulli
(p) random variables. 0 < p < 1. We study the Horton-Strahler number H, , and show that

H, 1
logn . log ——doe
OB 1 Of 5w (p,i—~p)

in probubility as n. — oc.
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Résumé. — On drudie des arbres aléatoires du fvpe « trie » construits @ partir de n suites
indépendantes de variables aléatoires Bernoulli (p) od 0 < p < 1. On prouve que

H, - i
log n IOg min ’}.1 -p)

en probabilité, oi H, est le nombre de Horton-Strahler.

INTRODUCTION

In 1960, Fredkin [9] coined the term trie for an efficient data structure
to store and retrieve strings. These were further developed and modified
by Knuth [4], Larson [16], Fagin, Nievergelt, Pippenger and Strong [6],
Litwin {17], Aho, Hopcroft and Ullman [1] and others. The tries considered
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444 L. DEVROYE, P. KRUSZEWSKI

here are constructed from n independent infinite binary strings Xi,..., X,.
Each string defines an infinite path in a binary tree: a 0 forces a move to
the left, and a | forces a move to the right. An infinite p-trie is a random
binary tree obtained by highlighting = infinite paths (from the root down).
These paths are independent and are described by independent, identically
distributed (i.i.d.) sequences of Bernoulli (p) random variables, 0 < p < 1.
For example, Figure 1 shows an infinite p-trie built from the infinite strings
01001..., 01011..., 10011..., 10100... and 11100.... The tree is now
pruned so that it has just n leaves at the n representative nodes (e.g., see
Fig. 2). That is, the finite p-trie is the infinite p-trie maximally trimmed so
that each of the = infinite paths is finite and visits at least one node not
visited by any other path (that node is necessarily a leaf of the future p-trie).
Observe that no representative node is allowed to be an ancestor of any other
representative node. This implies that every internal (non-leaf) node has at
least two leaves in its collection of descendants.

Originally used to classify river systems by Horton [ 1] and Strahler [24],
the Horton-Strahler number has also been applied to binary trees. Let u be a

0i00L.. 01081 .. . ’. K
100t... 10100... 11100..

Figure 1. — An infinite p-trie.

1001t...  10100...

0100i.. O010t1..

Figure 2. - The p-trie is a trimmed-down version of the infinite
p-trie in which the strings are associated with the leaves.
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node in a binary tree. Let |u| be the number of nodes in the subtree rooted
at « (with u included) and let the Horton-Strahler number S, be defined by

0 if |u|=0,
max{Sy, Sw} + Iis,=5,] if |u|>1 anduhas
(possibility-nonexistent)

children v and w,

where [ is the indicator function. Note that leaves u have S,, = 1, and that
internal nodes u with one proper child v have S, = S,.

Figure 3. — A binary tree with Horton-Strabler labelling.

In general, let H, Le the Horton-Strahler number of the root of a binary
tree with n-nodes. For a chain-shaped tree, H, = 1. For a complete tree
with & full levels and 2 — 1 nodes, we have H, = k. A little thought
shows that I, < logyn + 1.

The Horton-Strahler number arises in computer science because of its
relationship to expression evaluation. In a computer, an arithmetic expression
is evaluated by micro-operations using registers. To facilitate this process, the
expression is stored as an expression tree with the operators in the internal
nodes and the operands in the external nodes. The arithmetic expression is
evaluated by traversing the corresponding tree. In 1958, Ershov [5] showed
that by always traversing the child node with the lower Horton-Strahler
number first, the corresponding register use is minimal (note however that
this does not minimize time). Furthermore, the minimum number of registers
required to evaluate an expression tree with root w is exactly S, + 1.
As expression evaluation is a special type of postorder traversal, the same
paradigm shows that the minimum stack size required for a postorder traversal
of a binary tree is S,, + 1 (e.g., see Frangon [8]). In fact, the Horton-Strahler
number occurs in almost every field involving some kind of natural branching
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pattern. More recently, the Horton-Strahler number has been used to draw
trees by Viennot, Eyrolles, Janey and Arques [29] and Kruszewski [15].
Viennot [28] provides a thorough overview. See also Vauchaussade de
Chaumont [26] and Vauchaussade de Chaumont and Viennot [27].

The properties of the Horton-Strahler number have only been studies for
one model of random binary tree, equiprobable binary trees (EBT). These
are random binary trees with n nodes drawn uniformly and at random
from all possible rooted binary trees with n nodes. Let H, be the Horton-
Strahler number of a random EBT with n nodes so that EH, and Var{H,}
“are the corresponding expected value and variance. It is well-known (see,
e.g., Flajolet, Raoult and Vuillemin [7], Kemp [13], Meir and Moon [18],
Meir, Moon and Pounder [19], Moon [20], Devroye and Kruszewski [4],
and Prodinger [23]) that

EH, ~logyn  and Var{H,} = O(1).

Viennot et al. [29] introduced the notion of corresponding ramification matrix.
Penaud [21] proyed their conjecture on the structure of the ramification
matrix for EBTs. Viennot et al. [29] experimentally studied the ramification
matrix for random binary search trees. Vannimenus and Viennot [25]
experimentally studied the ramification matrix for “injection patterns”.

In tree-drawing applications, one needs a family of trees with one or
more parameters so that the resulting trees cover a sufficiently wide range
of shapes. One such family is the family of tries with parameter p. As Hp
varies with p, the parameter p may be used to control the “bushiness” and
elongation of the drawn trees. For example, Arques et al. [2] visualized tries
as botanical trees. It would be desirable to have simple two- and multi-
parameter families as well, for added flexibility. These may be obtained
by considering Markovian tries, in which the i.i.d. Bemoulli sequences are
replaced by Markovian sequences of random bits (see, e.g., Jacquet and
Szpankowski [12]). The study of the Horton-Strahler number for this moel
is not attempted here.

We first define two tree metrics, the Balance number and the Fill level,
which serve as deterministic upper and lower bounds for the Horton-Strahler
number. We then derive the upper and lower bounds respectively of these two
metrics and show that they converge to the same value, thereby squeezing
Horton-Strahler number between them.
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THE BALANCE NUMBER

We first define an infinite trie 7" as the infinite complete binary tree. A
position of a node in T* is addressed by two integers, (i,(), where [ is the
level number ({ > 0), and 0 <7 < 2! — 1 is an integer indicating the node
at level 1. For example, the root is at level 0, so < = [ = 0 for the root. The
integer ¢ when expanded into [ bits describes the path from the root to the
node (O forces a left turn, 1 forces a right turn). Let |i|; denote the number
of one bits in the last [ bits of i.

[f we take an i.i.d. sequence of Bemoulli (p) random variables, say
Z1,23,23,... and write the bits backwards to form integers, then we obtain
the integers

Z1+2' 2y + 222+ - -,

These are precisely the integers visited on the path from the root by our
sequence. At level 0, we visit 0. At level 1, Zy, at level 2, Z1 + 217, and
so forth. When we refer to node (z,1), and ¢ > 2!, we are in fact referring
to (4 mod 2',1). Therefore, we allow such references modulo 2k

The probability that a random i.i.d. sequence of Bernoulli (p) random
variables carves out a path that reaches (2,1) is ¢i1 = plili (1 — p)’—lil:. We
call this the probability of node (i,(). For every node (i,!) we record its
cardinality C;, the number of the n strings Xi,... . X, that go through it,
i.e., those strings that have in their first [ bits the integer ¢ written backwards.
If |7}y = k, then Cj; is binomial (n, P (1 - p)l“k). The sibling of a node
(3,1) is (4,1) where 7' and 7 differ in the last bit only. We define the Balance
number of (3,!) as

{
Bi,l = ZI[l <Ci;<Cu
J=1 '

where (i, ) denotes (i mod 2/, j). The Balance number By, of the p-trie is

B, =sup B,
(.n

where the supremum is only over those nodes (z,[) that are in the p-trie. For
example, Figure 4 shows our trie with the edges labelled by the indicator
function Iji<c, ;<c. ;] and the nodes labelled by Balance number.

We note that since nodes with no siblings have the same Balance numbers
as their parents, the finite and infinite p-tries (and the comresponding Patricia
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Figure 4. — The trie with Balance numbers.

tree — a Patricia tree is a trie in which all internal nodes with one child
are removed and recursively replaced by that sole child) all have the same
Balance number.

We now show the following upper bound on B,,.

Taeorem 1: For0<p< and € > 0,

lim P{B, > (L +e) logx n} = 0.

n—0c

Proof: The nodes are separated into three categories:

w

= {(3,1) $ngit 2 nt},
= {(i,1) :n7° <ngiy <n°},
C’ ={(i,l) :ngy <n~}

Let Ay be the event that for all (i,l) e A, 1> 1, Cyy < Cyy if and

only if ¢;; < gjsy. For p < 2, we will see in Lemma 1 that, if Af is the
complement of Ay,

P{45} — 0.
On any path, the number of nodcs that belong to B is not more than

2+ 2 log__ n (assuming still p < 2, then paths of the form (...000...)

maximize the path length). Finally, let B* be the subset of nodes in B with
at least one child in C.-We show in Lemma 2 that

f . , 1
P31 €B :Cyy>M}—0 i M21+-. (1)
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Collecting all this, we note that for any (3, (), with probability tending to one,

Bij <M+ (2+25 log_1_ n)+ {(m,]) on path from (z,!) to root,}

(m,J) € A, qmj < Qmj

@)
As any path visits B*, and every node of B* has cardinality < M with
probability tending to one, the contribution to B;, from all nodes below that
node of B* is < M. Observe that the last quantity of (2) is maximized by
choosing i with binary expansion (111...).
Then we must have, for any (m,j) € A on the path to (4,1), np" > n¢
orm < (1—¢) lUgl n. Therefore, as we may take M =1+ %

1 log
Bi;j <1+ - +(2+2e 11’ k)g1n>+(1—e)logln
10551‘_— v
1 log
§3+—+<1+2€ )logxn
T € logl__p

Thus we will have shown that

log;; v
P{sup B;; > (1 + 2¢ T ) loginp — 0,
(i) log=/ v

for all e > 0. O
We are left with two technical lemmas.

Lemma 1: P{A§} — 0.

Proof: Take (4,1) € A and let (¢*,1*) denote its parent (note: I* = l -1,
* = imod 2/*). Given C;. ;., we know that C;; is binomial (Civ 1+, p)
or binomial (C;-;-,p) depending upon whether its is left or right child.
Now, if gy < giry

[Ci > Cing] = [Ciy 2 Ci= g = Cid]
1
=[Ci1 2 5 Ci ]

1
= {Ci,l —pCi~t- 2 <§ — P) C-z~,z‘]-
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Thus, by Heeffding’s inequality [10],

2
1
P{Ci; > Ciy|Ci-4n} < GXP{-2(§ - p) Ci‘,l'}-

We argue similarly for g;; > gir 4, [Ciy < Ciry], and note that

Cit 2 Cia,qit < Girg .
P or S QE{C—Z(;"P) Ci‘.l‘}
Ciy < Cungy Gia > qin g

EIB{§C~ ) (where 0 < 6 < 1)

= 2(1 = Qi I+ + q,:.,l-b')n
S_ 26—(1-6)(1“"'”

< 28—(1—-6)11‘-’

as ng; ;- > n° because (¢,l) € A. Thus, by Boole’s inequality,

-

Cit 2 Ci g, i < qir g - )
P U or < |AJ2e=(=0 (3)
ined [ Cit < Cirgyqip > qiry

Clearly, |A| is not more than the number of leaves in the tree pruned to
A times the height of A. But as the leaves are disjoint, their probabilities
cannot sum to more than one, and each individual probability is at least
n~(1=€) the number is not more than n'~<. The height of A is not more
than 1 + log L by a trivial argument. Thus, (3) is not larger than

=P

2(1 +log 1 n) pl=e~ (1= g O
l=p .

LemMma 2.

" PS sup Ciy>MH -0 for M>1+ -1-
(i.)eB~ €

Proof: First we count the number of nodes in B*. Clearly, for any node
in B*, ng;y > n~¢ and ng¢;p < n~¢ because one of its children must be
in C. Let C* be the collection of all the rightmost (“p™) children of nodes
in B* (i.e., all nodes in C* have probability p times that of their parent in
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B*). Note that the nodes in C* are disjoint, hence their probabilities sum
to at most one. But for (i,{) € C*,

—£
ngi1 = Ng» -p>n °p,

or gi; > p/nt** Therefore, |C*[n=(+%)p < 1. Thus, |B*| < nl“"/p Fix
(4,1) € B*. Recall that ¢;; < 1/pn'*<. Then

n

P{Ciy>M}< > (?)(Qi,l)j(l — )"

J>M
n ;
< (m) (@)™ (1 + ng;; + (12.(1,:_1)2 +...)
(wherem = |M + 1))

. 1
< (y (] m
1 1
S (,na)m 1 1
- ! ~ pme
2
<
- (pn")”‘
for n large enough. Thus
2|B* o2nlte
P{ sup (”,1>M1 | Jng n”n
(id)eB- (pne) p(pnc)

for all n large enough. This tends to zero if em > 1 4+ €. That is, if
m > 1+ 1/e. This holds if M = 1+ 1/e. O

We can now derive the result in Theorem 1 for all p € (0,1):

CoroLLary 1: Foralle > 0,0 < p < 1,

lim P{Bu>(1+")10g - }:O.

= X

Proof: We note that for p = 1/2, the same proof works throughout, except
for the following. From (2), regardless of whether Lemma 1 holds or not,

Bi,l S M+‘2+2510g2 n+ (l —-E)l()gz n
< 1+l+-(l + €) logy n.
€
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So, we need not bother with (2) nor an extension of Lemma 1. In the proof
of Lemuna 2, the fact that p < 1/2 was not used. We thus see that for all
e>0,0<p<i,

n—o0 min (p,1-p)

lim P{Bn >(14+¢€)log__x n} =0 0O

THE FILL LEVEL

The Fill level or saturation level of a binary tree is the deepest level [
in the tree such that all possible 2' nodes at that level exist. For example,
the trie of Figure 2 has Fill level 2. In 1992, Devroye {3] showed that for
random Patricia trees constructed from n i.i.d. sequences of independent
equiprobable bits and Fill level F; that

F, —logyn
“ho 92,
log, log n

almost surely. We let Fy, be the Fill level, of a p-trie with n strings and
show the following lower bound — the short proof is included here for
completeness. For a much larger class of random ‘tries, F,, was studied by
Pittel [22], whose results imply the bound given below.

TreOREM 2: For e > 0 and 0 < p < 1,

lim P{Fn. <(l-e)log__ n} = 0.

n— min (p,1—-p)

Proof: Without loss of generality, we assume that p < 1 /2. We note that

[-Fn < l] = [05?_%12111—1 Ci,l = O] .

Equivalently, by Boole’s inequality, we have

2-1
P{Fn.< l} < P{OS{}%]ZI’I—I Ci,l = U} < § P{C,'J = 0}

) n
! ol )
=2 max P{C,;;=0}=2{1—-— min g
0<i<at=1 { 1.l } 0<i<2i-1 (el

S 2I(l_p1)n S 216—'7'1])’.
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This tends towards 0 with n if we take [ ~ (1 —¢€)logn/log(1/p) for
any € > 0. O

It is equally easy to show that in fact £,/ log . 1 in probability
min(p,l=p

(see Kruszewski [25] and Corollary 2 below).
THE HORTON-STRAHLER NUMBER

We introduce another metric, related to the Balance number. For a node
u in a binary tree, we set
0 it |u|=0,

max(B;, + [[lt’lﬁl'wl]’ B, + I[l"'—’lSll‘ll) if |u/>1 and
u has children

B: =

v and w,

(see Fig. 5). We call B}, the alternate Balance number of =. It is easy to see
that B} = 1 for all leaves u. If B, is the Balance number of any binary
tree with root u, then B,, = DB}, because B;; is the maximum number of 1’s
(from the I!’ s) along any path in the tree. Note however that the Balance
number of individual nodes - the B;;’s in the second section — are not
equal to the quantities DIj.

Figure 5. - Alternate Balance number labelling,

We note that the Balance number provides an upper bound on the
Horton-Strahler number.

LeMMA 3: For each binary trie with root u, Sy < Bj,.

" Proof: For a particular tree, this follows by induction on A, the height
of a node (distance from its furthest descendant leal). At leaves wu,
S, = B* = 1. Assume that the assertion holds for all nodes of height
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less than h. At height & we take a node uw with children v and w. We
have S, < B, S < Bj, by assumption. If S, = S, then, assuming
[»| £ |w|, we have B}, > By +1 > Sy +1 = S,. If S, # Sy, then
Su = max(Sy, Sw) < max(Bj, Bl) < B}, and we are done. [

We observe that the Fill level provides a lower bound for the Horton-
Strahler number. '

LEMMA 4: For each binuary tree with root u, Sy > Fy.
Proof: Trivial. 0O
We conclude the following tight bound on the Horton-Strahler number

H, for p-tries.

THEOREM 3: For a p-trie with n strings,

H n 1

— 1
log, log Tn (pi=p)

in probability.

Proof: The upper bound follows from Lemma 3 and Corollary 1. The
lower bound follows from Lemuna 4 and Theorem 2. 0O

This theorem together with Lemmas 3 and 4 allow us to conclude the
following.

COROLLARY 2: For a p-trie with n strings,

B
- LI 1 . in probability
ogn log min (p,1-p)
and
1 LI : 1 r in probability.
ogn log min (p.1—p)

Finally, we note that as p-tries and their corresponding Patricia trees have
the same Horton-Strahler numbers, our bound also hold for Patricia trees.
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