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Summary. The theory of records in sequences of independent identically
distributed random variables leads to simple proofs of various properties
of random trees, including among other things, the limit law for the depth
of the last node of random ordered trees, random union-find trees, and
random binary search trees.

1. Introduction

In this note, we point out the connection between random trees and records
in a sequence of independent identically distributed (iid) random variables. This
allows us to obtain short and hopefully insightful proofs of a number of proper-
ties of these trees.

To illustrate this, we will prove that the length of the path from the root
to the last node added in a tree with n elements is asymptotically normally
distributed with mean and variance both equal to 2 logn. This property was
obtained independently by Mahmoud and Pittel (see announcement of the result
in Mahmoud and Pittel [15, footnote 1]) based on a close analysis of the behav-
jor of Stirling numbers of the first kind. We also consider models for random
ordered trees and random union-find trees.

2. Records. The Connection

In an iid sequence X, ..., X, of random variables with a given density, we
say that X, is a record (or up-record) if X,=max(X,,..., X;), and we let Y,
be the indicator of this event. Records have a few useful properties that are
perhaps best captured in the survey article of Glick [9]. Notice first that the
distribution of (Y;, ..., Y,) (and of all the functions of these random variables)
does not depend upon the common density of the X’s. Also, we may without
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124 L. Devroye

loss of generality consider that X, ..., X, is a random equiprobable permuta-
tion of 1, ..., n. The basic properties of records can be summarized as follows:

A) If Ry, ..., R, are the partial ranks of X, ..., X, (ie. R;,=j if and only
if X; is the j-th largest among X, ..., X,), then R, ..., R, are independent.
This implies that Y,, ..., Y, are independent. Also, for each j, R; is uniformly
distributed on 1, ..., j.

B) P(Y,=1)=1/i,alli=1.

C) The position (or index) of the last record in X, ..., X, is uniformly
distributed on 1, ..., n.

D) If N, is the number of records in X |, ..., X,, H, is the summed harmonic

series y 1/i,and H» is ) 1/i?, then E(N,)=H, and Var(N,)=H,— H?.

i=1 i=1
E) N,/logn— 1 in probability.

F) (Nn—logn)/l/logn tends in distribution to a normal random variable
as n— o (Renyi [17]).

Remark 1. About the proofs of D, E, and F. Property D is immediate from A
and B. Using estimates for the harmonic series found ¢.g. in Knuth [11, 12],
we note in particular that E(N,)—logn —;=0.57721566499... (; is Euler’s con-
stant), and Var(N,)—logn — y—n?/6. The law of large numbers (E) follows from
D and Chebyshev’s inequality. The central limit theorem F can be obtained
very easily by verifying the conditions of the Lindeberg-Feller central limit theo-
rem (see e.g. Chow and Teicher [5, p. 291]). The zero mean random variables

Y, — 1/i satisfy the central limit theorem (i.e. Y (Y- l/i);.cn tends in distribution
i=1
to the normal law as n —oc where s, = ) Var(Y,-)) when
i=1

Y | x*dF(x)=o(s;7), all £>0,

J=1 |x|>es;

(the Lindeberg-Feller condition) where F; is the distribution function of Y;—1/j.

n 1 1 .
In our case, we have s, = ) (1 — > =H,— H{?. Note that the Lindeberg-Feller
i

=1l
condition is satisfied since s,—oc, and each F; puts all its mass on [—1, 1].
Thus, we conclude that (N,—H,)/}/ H,— H'? tends in distribution to a normal
random variable. []

Remark 2. Generating functions. Records can also be handled via characteristic
functions or generating functions. From the independence of the Ys, we see
that the characteristic function ¢,(t) of N, 1s

n

Ga)=E@" 5 =] E@ )= ] <Cl+1;)
Jj=1 j=1\. .

™

r! I



Records and Random Trees 125

Similarly, the generating function f,(z) (deﬁned as Y P(N,=)) zj) can be
ji=0

obtained by replacing € by z in the expression for ¢,(t). The standard combina-

torial way of deriving f,(z) uses the recursion

1 1
P(N,=i+1)=~P(N,_,=i)+— ~ P(N,_,=i+1)
n n

subjected to the boundary value P(N,=1)=1. Hofri [10, pp. 112-117] and
Sedgewick [ 10, pp. 151-152] used this technique to study the number of records
in a random permutation of 1, ..., n. The coefficient z' in the expansion of f,(z)

yields
1
P(N,,=i)=,[’.’],

ntli
where [.] denotes the Stirling number of the first kind. This provides the well-

. . - n .
known interpretation of the Stirling number [] as the number of permutations
i

of n numbers having precisely i records. The moments of N, can be determined
very quickly from the characteristic or generating functions. We obtain E(N,)
=H, and Var(N,)=H,— H{?, confirming item D above. We will not use the
generating functions in any of our derivations, basing all our results solely on
properties A —F stated above. [

3. Random Ordered Trees

An ordered tree on n nodes is a tree in which each node can have any number
of children, and the children are ordered from oldest to youngest. A random
ordered tree can be constructed incrementally by starting with a root node,
and given a tree with i nodes, attaching the i+ 1-st node as the youngest child
of a random equiprobable node among the i nodes already present. Note for
example that the number of children of node i is distributed as

n

Z I[nodejatlaches itself tonode i)
j=i+1
. . R 1 .
It is obvious that the expected value is ) l__—lz H,_,—H,;_,. In particular,
j:i+ 1.
the number of offspring is distributed as the number of records in an iid sequence
X, ..., X,, with index greater than i. For fixed i, the number of children is

thus asymptotically distributed like log n+ N]/log n where N is a normal random
variable.

Consider next the level L; of node i in the random ordered tree, ie. the
distance from the root to node i in the tree. Clearly, L, =0. Also, L; is stochasti-
cally smaller than L; for i<j. Many of the structural properties of the tree
are related to the behavior of the random variables L;, 1 <i<n.

-



126 L. Devroye

Theorem O 1. L, is distributed as the number of records in a random equiprobable
permutation of 1, ..., n—1. Hence,

A) E(L,)=H,_,.

B) Var(L,)=H,_,—H?,.

C) L,/E(L,)— 1 in probability as n — 0.

D) (L,— E(L,))/)/ Var(L,) converges in distribution to a normal random vari-
able.

Proof of Theorem O1. 1t suffices to prove the first statement of the Lemma,
and to apply the properties of records stated in Sect. 2. The father node of
element n is a uniform number on 1,...,n—1, say «,. Given a,, its father
node a,, if a, > 1, is in turn uniformly distributed on 1, ..., a, — l. We continue
this until we encounter a,,=1, the root of the tree. The level of node n is then
equal to m. Consider next a totally different experiment based upon n—1 iid
uniform [0, 1] random variables X, ..., X,_,. Let b; be the index of the last
record. We know from property C that b, is uniformly distributedon 1, ..., n—1.
Given by, let b, be the index of the last record (the maximum) of X, ..., X, .
Clearly, given b, > 1, b, 1s uniformly distributed on 1, ..., b; — 1. We keep going
until we find for the first time b,,=1. Clearly, the number of records in the
sequence is m. By comparison of the two experiments, we can now conclude
that L,, the level of node n in the random ordered tree, is distributed as the
number of recordsin X, ..., X,_,. O

4. Random Union-Find Trees

Consider n singleton sets, each consisting of a different element. Grab two sets
uniformly and at random, and join them using the usual union-find tree structure
(see e.g. Aho, Hopcroft, and Ullman [2]). Repeat this operation until all sets
are joined into one set of n elements. The corresponding tree is called the union-
find tree; we assume that in the join operation, each set is equally likely to
end up in the subtree of the root of the other set. This model (called the random
sets model by Sedgewick [19]) is due to Doyle and Rivest [8]. For other models,
see €.2. Yao [20] and Knuth and Schonhage [13].

Let L, ..., L, be the levels of the elements in the union-find tree. By symme-
try, we sec that the L;s are identically distributed. The level of element one
is initially zero since it starts as a root of a singleton set. Every time the set
to which this element belongs is selected as the set to be joined as a subtree
of the root of another set, its level increases by one. Call this event E; if it
happens during the iteration in which there are i sets left. Thus, each L; is
distributed as

where the random variables Iy, are independent, and Bernoulli with success
probability 1/i. In the notation of random permutations (see Sect. 2), this is
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Records and Random Trees 127

distributed as ) I, ;. We conclude that L, + 1 is distributed as N,, the number
i=2

of records in an iid sequence of length n. Hence, properties D, E and F of

records apply to each L;+ 1. See also Theorem 8 of Devroye [7].

5. Random Binary Search Trees

Consider a random binary search tree on n nodes constructed in the usual
manner from a random equiprobable permutation of 1, ..., n (see Aho, Hopcroft
and Ullman [1, 2] for definitions and properties). These trees were studied by
Lynch [14], Knuth [11], Robson [18], Sedgewick [19], Pittel [16], Mahmoud
and Pittel [15], Brown and Shubert [3], Devroye [6, 7] and others.

We will show

Theorem S1. Let L, be the level of the last node added to a random binary search
tree. Then

A) E(L,)=2H,—2.

B) Var(L,)=2H,—4HX»+2.

C) L,/E(L,)— lin probability as n — oc .

D) (L,— E(L,))/)/ Var(L,) converges in distribution to a normal random variable.
Proof of Theorem S1. We consider a random binary search tree constructed

from a random equiprobable permutation X, ..., X, of 1,...,n Let L and
R partition the X; sequence (1 <i<n) into two sequences X,,, ..., X;, and
X, 1. X;m» Wwhere k+m=n—1, and each X; is smaller than X,, and each

X,; 1s larger than X,. In fact, k=X,—1 and m=n—X,. Within L and R, the
order of appearances of the X;’s is unaltered, however. The crucial observation
we make now is that the level L, of X, is the sum of the number of records
(up-records) in L plus the number of down-records in R. Equally crucial is
that, given k, the L sequence is a random equiprobable permutation of 1, ..., k,
and similarly for the R sequence. Also, the two random permutations are inde-
pendent. Thus, the number L, is distributed, by mirroring, as the sum of the
number of down-records in L plus the number of up-records in R. Consider
now the sequence X,, X, X5, ..., X,,_,, with partial ranks R, ..., R,. Notice
the slight off-set of the indices: R, is the partial rank of X,, R, is the partial
rank of X, and so forth. We conclude that L, is distributed as

n
Z ]R.'G{l-i}'
i=2

By the independence of the R;’s, we can now casily deduce all the stated
properties. In particular,

=2H,-2.

M~.

E(L,)=

i

n

L2
i

2
Next,

i=2 !

Var(L,)= Y 2(12.>=(2H,,2)~(4 HY_4)=2H,—4H?+2.
. 1



128 L. Devroye

By Chebyshev’s inequality, L,/E(L,)— 1 in probability, and by the Lindeberg-

Feller central limit theorem (see Remark 1), (L,— E(L,))/|/ Var(L,) converges in
distribution to a normal random variable. [

Theorem S1 does not contain elements that were not known before. The
novelty is in the proof: the generating function approach was used by many

. . Lo =242z )
before: the generating function of L, is [] 17-*_ (see e.g. Sedgewick [19],
j=2 J

p. 143). By independence of the R;’s, observe that this is indeed the generating
function of ) I, ;. Lynch [14] and Knuth [11] proved that

i=2

1 —1
P(Ln:m:;[”k Jzk, l<k=n

The generating function readily yields the exact values of E(L,) and Var(L,)
given in Theorem S1 (Sedgewick [19], p. 144). Chebyshev’s inequality allows
one to conclude the weak law of large numbers given in Theorem S 1. See also
Mahmoud and Pittel [15]. The limit law (part D of Theorem S 1) is announced
in footnote 1 of Mahmoud and Pittel [15], and is obtained by these authors
based on a finer analysis of the Stirling numbers of the first kind.

6. Large Deviation Results

The random variable L, studied in this note was in cach case related to a
sum of independent random variables related to record times in an i.i.d. sequence.
Hence, it is straightforward to exploit this fact to obtain large deviation inequali-
ties. For example, if N, is the number of records in a random permutation
of 1, ..., n, then we have:

Theorem L 1. For every £>0,

2
&2

,;7(lln+1:)log(1 + H;>§67W

P(N,—H,>¢)<e

and
—(H—al] '] & &2
(1) 7

P(N,~H,= —&)<e

Proof of Theorem L 1. Let t>0 be arbitrary. We use Chernoff’s exponential
bounding technique (Chernoff [4]) as follows:

d 1 Y tH, e 11
P(Z (Y;—i>§8>§€[x§x (H,+e) [ (1f+7€r)ct(l-{,,+zz)
i=1

i=1

&
< efntet—1-0—re _ e”*(Hn“““Og(l ‘*’ﬁ")
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when we take t=log(l+e¢/H,) (this choice minimizes the bound). This can be
bounded from above by using the inequality log(1+u)=2u/(2+u), valid for
all u=0. Similarly,

5 e

—ty Yi+i(,—¢)
€ i

[l

lIA

" I 1
1_“_ —t\ o t(H, —¢)
11:[1< [te )e

e:—(lln—.’:ilog<1' H

S@H"(l_ 1 -—?"-)*t.*::e

when we take 1= —log(1 —¢/H,) (this choice minimizes the bound). This can
be bounded from above by using the inequality —(1—u)log(l —u)<u—u?/2,
valid for I >u=>0. [

We have seen that for the random ordered tree, L, is distributed as N, _,,
and that for the random union-find tree under the random sets model, all L;’s
are distributed as N, — L. In both cases, Theorem L 1 applies with the appropriate
changes. For the random binary search tree, some changes are necessary, since

L,—(2H,—2)is distributed as ) (

2 .
Y,— ) where the Y/s arc independent and
i=2 !

Bernoulli with success probability 2/i. The proof of Thecorem L1 can now be
mimicked.
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