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Convex Hulls for Random Lines
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Consider n i .i .d . random lines in the plane defined by their slope and distance
from the origin . The slope is uniformly distributed on (0, 27r] and independent of
the distance R from the origin . These lines define a set I of n(n - 1)/2 intersec-
tion points . It was recently shown by Atallah and Ching and Lee that the
cardinality of the convex hull of these intersection points is 0(n), and they
exhibited an 0(n log n) time algorithm for computing such a convex hull . Let N I,
and N,1 be the number of points on the convex hull and outer layer of 1,
respectively. We show that there exist arrangements of lines in which No, = n(n -
l)/2 . We show that, nevertheless, both N. h and NI have expected values O(1),
and give hounds that are uniform over all distributions of R with 0 < ER < Do .

These results lead to an algorithm for computing the convex hull of I in 0(n log n)
worst-case time and 0(n) expected time under these conditions .

	

1993 Academic

Press, Inc .

1 . INTRODUCTION

Let L = (L I , . . . , L„} be a finite set of lines in the plane, where each
line L i is specified by an equation y = a,x + b ; for some real numbers
a;, b ;, I < i _< n . L induces a partition of the plane known as the arrange-
ment A(L), into 0(n2 ) faces, edges, and vertices, The vertices are the
points where the lines in L intersect . Let V,, denote the intersection point
of L ; and Li . The set I = (Vi,.I 1 5 i, j < n, i #' j) collects all such intersec-
tion points . The edges are the connected components of the lines that
remain when the vertices are deleted . The faces are the connected
components of the complement of the union of the lines L,, L2 , . . . , L,, .
For a detailed fundamental treatment of arrangements the reader is
referred to Grunbaum [12] and Edelsbrunner [10] . A survey of recent
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FIGURE I

research results can be found in Edelsbrunner, Guibas, and Sharir [11] .
Figure 1 illustrates an arrangement of the convex hull of I .

DEFINITION . The intersection point I; j for i ~A j and I <_ i, j < n is
said to be extreme with respect to line L; if all other intersection points on
L; lie to one side of t; j .

DEFINITION . The intersection point V1 , for i ~* j and I < i, j 5 n is
said to be critical if V,, is extreme with respect to both L, and Lj .

It is well known that the convex hull of n points in the plane can be
computed in O(n log n) worst-case and linear expected time [7] under
certain assumptions on the distribution of the points . Straightforward
application of such algorithms to all the points of I thus leads to algo-
rithms with 0(n 2 log n) worst-case time and 0(n 2) space. Surprisingly,
Atallah [1] and Ching and Lee [5] independently presented an 0(n log n)
worst-case time algorithm with 0(n) space for this problem. They show
that the vertices of the convex hull of I are a subset of the critical points
determined by pairs of lines that are adjacent on a list in which they are
sorted by slope . Therefore they first sort the lines by slope to obtain 0(n)
critical points and subsequently find their convex hull with any 0(n log n)
algorithm. We show here that if we choose our convex hull algorithm
carefully we can obtain an algorithm which will also exhibit 0(n) expected
complexity under a natural definition of a random line and almost any
radially symmetric distribution on its parameters as well as under a model
of computation that allows us to compute floor and ceiling functions in
constant time .
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2. THE MAIN RESULT

Let X,, . . . , X„ be i .i .d. random variables with a radially symmetric
distribution in the plane, i .e ., X, is distributed as (R cos 0, R sin 0),
where 0 is uniformly distributed on [0,27r], and R is independent of 0
and has a given distribution on the positive reals . With each point we
associate a line passing through the point and perpendicular to the
segment linking the origin with the point . We thus obtain n random lines
defining z intersection points V1 (V j is the intersection of the lines
through X; and XX , respectively) .

The object of this note is to study the convex hull and the outer layer
formed by the V, j 's . Recall that the outer layer is the subset of V,,'s with
the property that an observer sitting on V, j cannot see any V,,, in at least
one of the four quadrants around him . The quadrants in the definition are
aligned with the coordinate axes . Also, any convex hull point is an outer
layer point .
Let NC,, and NN,, be the number of points on the convex hull and outer

layer of the V, 1 's . We prove the following

THEOREM 1 . Let R have a distribution with 0 < ER < x . Then there
exists a universal constant y such that uniformly over all n, EN,,, < EN,,, <
y < x . The constant y does not depend upon the distribution of R .

The proof of Theorem I is given in Section 4 . To keep the proof
relatively short, we will not try to find the best possible y, although
EN,,, --> 4 as n --> x is conjectured . The point is that END ,, is O(1), and
that the bound is in fact distribution-free . The constant y that emerges
from our proof is

x

4 + E 2' +3 exp(-(1 - (7/6)e-'/6)(3/ir)2'-~) = 1939 .4634 . . . .
i=o

The asymptotics for our problem are not unlike those for samples of n
i .i .d. points in the plane having a common heavy-tailed radially symmetric
distribution. The study of the size of random convex hulls dates back to
Renyi and Sulanke [18], and that of radially symmetric distributions to
Carnal [4]. Additional results were obtained in the radially symmetric case
by Dwyer [8, 9] and Borgwardt [2] . Dwyer also points out the importance
of the results in computational geometry, while Borgwardt illustrates the
use of convex hulls in analyzing linear programming algorithms . For a
survey of results on random convex hulls, see Buchta [3] or Schneider [19] .

The theorem proved here can be generalized to other models, and in
particular models in which the X,'s are i .i .d ., but not necessarily radially
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symmetric. One that seems particularly promising is that in which the Xi's
have a common but arbitrary density. Such generalizations will not be
considered in the present paper . Additionally, it turns out that EN, <_
Y(0) < oc as well, where 6 E (0, Tr] is a given camera angle, and Na is the
number of V,,'s for which an observer sitting on V, with a camera of
viewing angle 6 can rotate his camera in such a way that at one point in
the rotation, he does not see any Vk1 through his finder . Such V,

'
's are

called 6-visible . Every outer layer point is 7r/2-visible . Every 7r-visible
point is a convex hull point . Thus, N, < Nch < N,,, <_ N, , 2 < N9 , where
0 < rr/2. The proof that EN, < y(6) < is not included here .

3 . ALGORITHM AND DISCUSSION

Consider n i .i .d. random lines in the plane defined by their slope and
distance from the origin . The slope is uniformly distributed on [0, 27r] and
independent of the distance R from the origin . Let N,, h and N,,, be the
number of points on the convex hull and outer layer (maximal vectors) of
I, respectively . We show that there exist arrangements of lines in which
No , = n(n - 1)/2. By Theorem 1, nevertheless, both N,,h and N,) , have
expected values O(1) . Therefore, if we first sort the lines using distributive
partitioning [6] in 0(n log n) worst-case time, 0(n) expected time, and
0(n) space (which is possible by the uniformity of the distribution of the
slopes), and subsequently find the convex hull of the adjacent critical
points in I using the output-sensitive algorithm of Kirkpatrick and Seidel
[15] which has complexity of 0(k log h), where k is the number of input
points and h is the cardinality of the convex hull, we obtain an algorithm
for computing the convex hull of I in 0(n log n) worst-case time, 0(n)
expected time, and 0(n) space .

For an arbitrary set of k points in the plane it is well known that
computing the outer layer has the same complexity as computing their
convex hull . However, for the case of arrangements of n lines computing
the outer layer is more difficult . The standard method based on sorting I
clearly yields an algorithm with 0(n2 log n) worst-case time, 0(n2) ex-
pected time, and 0(n2 ) space. While we can improve slightly on the actual
running time, it is difficult to improve on the above complexities for the
following reason .

LEMMA 2 . An arrangement of the lines L = (L I , L2 , . . . . L„) may con-

tain as many as
l
z

1
outer layer points .

Proof. We provide a construction illustrated in Fig . 2 that has all
points in I as outer layer points . Let the first point on I be a point a
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FIGURE 2

located at the origin . We accomplish this be defining line L, to have the
equation y = -x, and line L 2 to have the equation y = -(1 + E)x,

where E is a suitably small positive constant. Let 6 denote the angle that
the line with maximum slope makes (over all lines drawn so far) with the
y-axis measured in a counterclockwise manner. The third line has equation
y = -(1 + 2E)x - 5, where 5 is a small positive constant. This consti-
tutes the three-step initialization phase of the construction and yields a
triangle [a, b, c] such that all three vertices are outer layer points and c has
maximum y coordinate. We now show how to add, at step r, line L„ and
create r - 1 new outer layer points at each step . Let d define the leftmost
intersection point on L, of a horizontal line colinear with c . Line L4 is
constructed to pass through point d and make an angle 6/2 with the
y-axis . This procedure is repeated until all n lines have been used up . For
example, after line L 4 has been inserted, f is the intersection point with
maximum y-coordinate and g is the point on line L, with y-coordinate
equal to that of f. Therefore, line L5 passes through g and makes an angle
B/2 with the y-axis, where 0 is the angle made by line L4 with the y-axis .

2

385
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Since at each step the angle with the y-axis is decreased by half of the
remaining angle all the lines in the arrangement have negative slope and
this ensures that when we add a new line no new intersection point is
dominated by any other new intersection point. By making each line pass
through the point on line L, that has the same y-coordinate of the highest
intersection point created thus far we ensure that no new intersection
point is dominated by any old intersection point. Therefore at each step all
the new intersection points introduced are outer layer points . Therefore
all n(n - 1)/2 intersection points are outer layer points . D

It follows that even if we use the output-sensitive algorithm of
Kirkpatrick and Seidel [16] with 0(k log c) complexity, where k is the
number of input points and L' is the number of outer layer points found,
our results imply an adaptive algorithm with 0(n 2 log t') actual running
time, 0(n2) expected time, and 0(n 2 ) space .

4. PROOF OF THEOREM I

It suffices to show the result for EN,,, . In our proof, we require many
auxiliary results .

LEMMA 3 . Let (R,, 0,) and (R 2 , 0 2 ) define two random lines according
to the model of the prel'ious section . Then, for r > 0, if the intersection point
is at distance A from the origin,

P{A >- r} < 2ER/r .

Proof. Consider Fig . 3 . Figure 3 shows two random lines with 0, _
3ir/2 and 02 E (0, rr/2) . The distribution of A remains unchanged if we
replace 02 by it - 0 2 . To treat the case 0 2 E Or, 2w), we note that if 0 2
is replaced by either 2w - 02 or by rr + 02 , then the new A* (say) is not
greater than A . Thus, to bound P{A >- r) from above, it suffices to
consider 0, = 3ir/2 and 0 2 uniformly distributed on (0, w/2) .
The angles r7 i and r72 are as shown in Fig. 3 . We have rt, _

arc sin(R,/A), 12 = arc sin(R 2/A), and it/2 - 0 2 = 77, + 772 . Thus,

R,

	

2
= sm m > n, ,

and similarly for R 2 . Combining this shows that

R, + R 2

	

2

	

2

A

	

? ;7r ( ?7I + 772) = 1 - 7r 02 = U,
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FIGURE 3

where U is a uniform [0, 1] random variable . Thus, d 5 (R I + R 2)/U, and
by Markov's inequality, after conditioning on R, + R z and then un-condi-
tioning,

P{A >_ r) 5 P~U < R
, + R2

<
2ER1

D
r

	

r

LEMMA 4. Let g; be nonnegative nonincreasing functions . If
(X,, . . . , X„) is a multinomial random variable, then

Eflgr(X,) < f Eg;(Xj ) .
I

	

r

Proof. The multinomial distribution is negatively quadrant dependent
(see, e .g ., [17]) . In addition, it is S-MRR2 (it is strongly multivariate
reverse of order 2), from which Lemma 4 follows according to Corollary
2.1 on page 505 of Karlin and Rinott [13]. 0

LEMMA 5 . Let p E (0, 1) and positive integers l and n be given, and let

(N,, N2 , . . . , NO

be a multinomial random vector with parameters n (the sample size) and
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1/(ln) (equal probabilities) . Then

E(

	

fl

	

(1 -p)) S e -c„pn

where c n = 1 - (1 +

	

and c n - c = 1 - (1 + 110e -111 as
n - oo .

Proof. We rewrite the product and use Lemma 4 :
n

Efl(( 1 - P)IfN,,21 + If IV, 121)
i=1

n

= EfJ(1 -p +PIN,<21)
i=1
n

5 lE(1 -P +P11N,<2))

if nER/r S 7r/12 .
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i=I

n

	

n-1

In

	

+P In~ 1

	

in )

In ) "-' ( 1

	

In + I ))

(

	

1
< I 1 - p + pe(n- U/ ln (1 + -))

n

l

(

	

/

	

1
_< exp

(
' -pnll - i l +

l
) e - cn - Il/ 1

n) . O

Next, we partition the plane up into 12 cones Ci of equal angle 2x/12,
and with the center at the origin . The range of angles governed by C i is
[2-rr(i - 1)/12,2zri/12). Furthermore, every cone is divided up into pre-
cisely n small cones of equal angle range 2-rr/l2n . For one of these small
cones C, the cone obtained by mirroring about the origin is denoted by C .

LEMMA 6 . Let (R 1,0 1 ) be a random line in which 0 1 is restricted to a
small cone C contained in C 10 , and let (R2102) be a random line in which
02 is restricted to C c C4 . Let V = VI , 2 be the intersection point of the two
lines, and let r > 0 be a given constant . Then

P(JIVII > r, V E C 1 ) >- 6nER/irrr

n

i
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Proof. Figure 4 shows a particular collection of 12 cones . The circle of
radius r centered at the origin is also shown . The small cones are not
shown in Fig. 4 as each C, contains precisely n of them .
The first fact needed is that V necessarily belongs to C I or C, . An

argument such as the one used in Lemma 3 shows that, using sin ,1 < rt

for q > 0,

R 1 + R2

Il VII

	

`10 1 -7T-0 2 1 .

Conditional on XI E C and X2 E C', the right-hand side of this inequal-
ity is distributed as (2rr/12n)IU - U'I, where U and U' are i .i .d .
random variables with the uniform distribution on [0, 11 . Note that
P{IU - U'I < x} = 2x - x 2 if 0 < x < 1 so that P{IU - U'1 < x} ->
min(1, x). Also, on a large enough probability space, we may assume that
U and U' are independent of R 1 , R2 . Thus, we have, exploiting various

389
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symmetries,

where we
LEMMA 7 .

P(IIVII > r, V E C,}
1
ZP(IIVII _ r,VEC, UC,)}

1
= 2 P{II 1/ II >_ r}

1

	

R, + R 2
>_ - P

	

>_ r2

	

(27r/12n)IU - U'I
1 (

	

( (12n) ~R,r+ R2) ~~
>_ E min 1,	

1

	

( 12nER
>_ - min 1,

2

	

7r r
(Jensen's and Chebyshev's inequalities)

6nER

DEVROYE AND TOUSSAINT

77- r

used the fact that nER/r < 7r/12. 0
Assume that R and r are related clia the inequality

nER

	

7r
r

	

12

Let N denote the number of V,- 1's that end up with II V,j II >_ r and Vj E C, (in
the notation of Lemma 6). Then

P{N = 0) < exp(-c„
3n 2 ER

7r r

where c„ = 1 - (1 + 1/6)e - "-' ""
Proof. We consider the cone partition defined above Lemma 6 . There

are 12n small cones . We create 6n double cones by joining each cone with
its mirror cone (about the origin). These are called B; (B for baby cone) .
The indices of the baby cones that intersect C 4 are grouped into a set G
(G for good indices) . Observe that the cardinality of G is precisely n . Let
N, denote the number of points X, that belong to the baby cone B E . The
probability of [X, E B;] is precisely 1/6n for each i . The vector of N,'s is
multinomially distributed with sample size n and equal probability param-
eters 1/6n . If B; has at least two XD's, then we take the first two such X1 's
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(by index) and define the intersection point of their lines by W,, (W for way
out there); otherwise, we artificially generate a W distributed as in the
case of N = 2. This necessitates a larger probability space ; in fact, we are
using an embedding argument . The purpose of this is to ensure that the

defW,'s and the N,_'s are independent . Clearly, if p, = P{W, E C 1 , IIW,II - r),
then, by Lemma 6, for i E G,

I

	

6nER def
pr ?

2
X

Trr
= p,

where the factor z takes into account that there is a 50% probability of X,
and X, ending up in opposite cones of B; given that both belong to B, .
Thus,

P{N=0}5PS

	

n

	

[W,14C,]u[IIW,II<r])
I,EG :N,>2

5 E( Gfl (I -p))
ie ;?2

5 e `„P' (Lemma 5) .

Note also that, in the last step we required the inequality for ER given in
the statement of the lemma . O

To prove Theorem 1, it is convenient to compute an upper bound for
EN,,, with sample size n + 2 . In the notation of the lemmata, we will take
r = ( n + 2) 2 ER . However, we will delay the substitution of r until as far
as possible to show why such a choice is practical . The plane is partitioned
into 12 equal cones C, . We reserve the notation C,(r) for the subset of C;
consisting of all points at distance at least r from the origin . The
cardinality (number of points among the Vk ,'s, 1 _< k, j < n, falling in a
set) of C,(r) is denoted by IC,(r)I. The intersection point of the lines
defined by X„ + , and X,, +2 is V = V,,,,,,,,2 . The following claim is
crucial . If V is an outer layer point for the lines defined by X,, . . . , X„
and 1C2(2r)I > 0, IC S(2r)I > 0, IC x(2r)I > 0, and IC„(2r)I > 0, then IIVII
r . To see this, we refer to Fig . 5 .

Cover the circle of radius r by a square of sides 2r and with center at
the origin . Take any x in this square . We claim that all four quadrants
centered at x properly contain one of the sets C,(2 r) with i e {2, 5, 8, 11} .
In Fig. 5, note that the points at coordinates (2r, 0) and (rV, r) form an
angle of it/6 at the origin. Thus, no point inside the square can be an
outer layer point if all four C,(2r)'s are nonempty .
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The argument then continues as follows . Choose the largest integer M
with the property that

it

	

r

	

-rr (n + 2) 2M

	

_ _	2

	

12 nER

	

12

	

n

Such a choice is necessary in order to allow us to meet the inequality
constraint imposed by Lemma 7 . We have

EN., < (n 2 2 )P{v is an outer layer point for the lines X,, . . . , X„}

j

< (n 2 2)z P{

	

U

	

[IC;( 2 1Iv1j)j = 01
llliE(2,5,8,Ii)

< 2(n + 2) 2P(l C,(2HHVu)1 = 0) (by rotational symmetry)
M

< 2(n + 2) 2

	

P{JIVII E(r2-('+')r2-'] 'C,(r2-('-')) I = 0}

+P{IC i(r2 -M )I = 0} + P(1IVI1 > r) )

M
= 2(n + 2) 2 F, P{IIVII E(r2-~'+", r2P{IC,(r2-v-1))I = 0)

j=0

+P{IC i (r2 M )I = o} + P{livii > r})

< 2(n + 2) 2 exp(-c„
3n2 ER2M )

7r r

M 2j+ 2 ER

	

3n 2ER2' - '

	

2ER
+

	

exp -c„

	

+
j=()

	

r

	

arr

	

r

where we applied Lemmata 3 and 7 . We resubstitute the values of M and
r and recall that c„ = I - (7/6)e-("-"/6 -* c`~ ef 1 - (7/6)e-'/'' . The
upper bound can be bounded in turn by

3n22 M

	

3n 22'- '
2(n + 2) z exp -c„

	

2 +

°`

2' +s exp -c„

	

z + 4
~rr(n + 2)

	

j=
0

	

vr(n + 2) 2

I



A
i
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which does not depend upon the distribution of R . Also, I tends to 0 with
n since 2 M grows linearly with n . Finally, for all n large enough (so that c„
is positive), the sum in II is finite . In fact, we have

lim sup EN,,, < 4 +

	

2j+3 exp(-(3c/n- )2
n-

	

j=0

This concludes the proof of the theorem . 0
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