Books on learning

Last update: Wed Feb 7 14:03:41 EST 2024


Luc's library has now opened its web doors to all McGill University students. The library is in fact my office (room 300N, McConnell Engineering Building), and the books are a subset of my private collection. Any McGill student may borrow any book at any time!



M. Anthony
N. Biggs

Computational Learning Theory [Google]
Cambridge University Press, Cambridge, 1992.

M. Anthony
P.L. Bartlett

Neural Network Learning: Theoretical Foundations [Google]
Cambridge University Press, Cambridge, 1999.

M. Anthony

Discrete Mathematics of Neural Networks Selected Topics [Google]
SIAM, Philadelphia, 2001.

M. A. Arbib (ed.)

The Handbook of Brain Theory and Neural Networks [Google]
MIT Press, Cambridge, MA, 1998.

Jean-Yves Audibert

PAC-Bayesian Statistical Learning Theory [Google]
Paris, France, 2004.

Peter Auer
Alexander Clark
Thomas Zeugmann
Sandra Zilles (eds)

Algorithmic Learning Theory [Google]
Springer, Cham, 2014.

J.D. Becker
I. Eisele
F.W. Mündemann

Parallelism, Learning, Evolution. WOPPLOT 89 [Google]
Springer-Verlag, Berlin, 1991.

Michael W. Berry
Murray Browne (eds)

Lecture Notes in Data Mining [Google]
Singapore, 2006.

Christopher M. Bishop

Pattern Recognition and Machine Learning [Google]
Springer-Verlag, New York, 2006.

Léon Bottou
Olivier Chapelle
Dennis DeCoste
Jason Weston

Large-Scale Kernel Machines [Google]
MIT Press, Cambridge, MA, 2007.

Nicolo Cesa-Bianchi
Gabor Lugosi

Prediction, Learning, and Games [Google]
Cambridge University Press, New York, 2006.

Eduardo Bayro Corrochano

Handbook of Geometric Computing [Google]
Springer-Verlag, Berlin, 2005.

N. Cristianini
J. Shawe-Taylor

An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods [Google]
Cambridge University Press, Cambridge, UK, 2000.

Nelio Cristianini
John Shawe-Taylor

An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods [Google]
Cambridge University Press, Cambridge, UK, 2000.

Anirban DasGupta

Probability for Statistics and Machine Learning: Fundamentals and Advanced Topics [Google]
Springer, New York, 2011.

Thomas G. Dietterich
Suzanna Becker
Zoubin Ghahramani (eds)

Neural Information Processing Systems 14 Volume 2 [Google]
MIT Press, Cambridge, MA, 2002.

Thomas G. Dietterich
Suzanna Becker
Zoubin Ghahramani (eds)

Neural Information Processing Systems 14 Volume 1 [Google]
MIT Press, Cambridge, MA, 2002.

M. Dror
P. L'Ecuyer
F. Szidarovszky (eds)

Modeling Uncertainty [Google]
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

Saso Dzeroski
Pance Panov
Dragi Kocev
Ljupco Todorovski (eds)

Discovery Science [Google]
Springer, Cham, 2014.

D. Fisher
H.-J. Lenz (eds)

Learning from Data: Artificial Intelligence and Statistics V [Google]
Springer-Verlag, New York, 1996.

Brendan J. Frey

Graphical Models for Machine Learning and Digital Communication [Google]
MIT Press, Cambridge, MA, 1998.

M. Fulk
J. Case (eds)

COLT'90: Proceedings of the Third Annual Workshop on Computational Learning Theory [Google]
Morgan Kaufmann, San Mateo, CA, 1990.

D.E. Goldberg

Genetic Algorithms in Search Optimization and Machine Learning [Google]
Addison-Wesley, Reading, MA, 1989.

Ian Goodfellow
Yoshua Bengio
Aaron Courville

Deep Learning [Google]
MIT Press, Cambridge, MA, 2016.

L. Györfi (ed.)

Principles of Nonparametric Learning [Google]
Springer-Verlag, Wien, 2002.

Laszlio Gyorfi
Gyorgy Ottucsak
Harro Walk

Machine Learning for Financial Engineering [Google]
Imperial College Press, London, 2012.

T. Hastie
R. Tibshirani
J. Friedman

The Elements of Statistical Learning [Google]
Springer-Verlag, New York, 2001.

Trevor Hastie
Robert Tibshirani
Martin Wainwright

Statistical Learning with Sparsity The Lasso and Generalizations [Google]
CRC Press, Boca Raton, FL, 2015.

D. Haussler (ed)

COLT'92: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory [Google]
ACM, New York, 1992.

Ralf Herbrich

Learning Kernel Classifiers Theory and Algorithms [Google]
MIT Press, Cambridge, MA, 2002.

U. Herkenrath
D. Kalin
W. Vogel (eds)

Mathematical Learning Models---Theory and Algorithms [Google]
Springer-Verlag, New York, 1983.

Alan Hutchinson

Algorithmic Learning [Google]
Clarendon Press, Oxford, 1994.

M. Iosifescu
R. Theodorescu

Random Processes and Learning [Google]
Springer-Verlag, New York, 1969.

F. Jelinek

Statistical Methods for Speech Recognition [Google]
MIT Press, Cambridge, MA, 1998.

Michael I. Jordan (ed)

Learning in Graphical Models [Google]
MIT Press, 1999.

M.J. Kearns

The Computational Complexity of Machine Learning [Google]
MIT Press, Cambridge, MA, 1990.

M.J. Kearns
U. Vazirani

An Introduction to Computational Learning Theory [Google]
MIT Press, Cambridge, MA, 1994.

Ludmila I. Kuncheva

Combining Pattern Classifiers Methods and Algorithms [Google]
John Wiley, New York, 2004.

J. Laird (ed)

Proceedings of the Fifth International Conference on Machine Learning [Google]
Morgan Kaufmann, San Mateo, CA, 1988.

Tor Lattimore
Csaba Szepesvari

Bandit Algorithms [Google]
Cambridge University Press, Cambridge, UK, 2020.

P.U. Lima
G.N. Saridis

Design of Intelligent Control Systems based on Hierarchical Stochastic Automata [Google]
World Scientific Publishing Co., Singapore, 1996.

Gabor Lugosi
Hans Ulrich Simon (eds)

Learning Theory 19th Annual Conference on Learning Theory COLT 2006 [Google]
Springer-Verlag, Berlin, 2006.

Mehryar Mohri
Afshin Rostamizadeh
Ameet Talwalkar

Foundations of Machine Learning [Google]
MIT Press, Cambridge, MA, 2012.

M. Mozer
M. Jordan
T. Petsche (eds.)

Neural Information Processing Systems [Google]
MIT Press, Cambridge, MA, 1997.

B.K. Natarajan

Machine Learning: A Theoretical Approach [Google]
Morgan Kaufmann, San Mateo, 1991.

R.M. Neal

Bayesian Learning for Neural Networks [Google]
Springer-Verlag, New York, 1996.

R.M. Neal

Bayesian Learning for Neural Networks [Google]
Springer-Verlag, New York, 1996.

M.F. Norman

Markov Processes and Learning Models [Google]
Academic Press, New York, 1972.

L. Pitt (ed)

COLT'93: Proceedings of the Sixth Annual ACM Conference on Computational Learning Theory [Google]
ACM, New York, 1993.

B. Porter
R.J. Mooney (eds)

Proceedings of the Seventh International Conference on Machine Learning [Google]
Morgan Kaufmann, San Mateo, CA, 1990.

J.R. Quinlan

C4.5: Programs for Machine Learning [Google]
Morgan Kaufmann, San Mateo, 1993.

Robert E. Schapire
Yoav Freund

Boosting Fondations and Algorithms [Google]
MIT Press, Cambridge, MA, 2012.

Robert E. Schapire
Yoav Freund

Boosting Fondations and Algorithms (Paperback Edition) [Google]
MIT Press, Cambridge, MA, 2014.

B. Schölkopf
C.J.C. Burges
A.J. Smola (eds)

Advances in Kernel Methods Support Vector Learning [Google]
MIT Press, Cambridge, MA, 1999.

Bernhard Schölkopf
Alexander J. Smola

Learning with Kernels [Google]
MIT Press, Cambridge, MA, 2002.

E.M. Segre (ed)

Proceedings of the Sixth International Conference on Machine Learning [Google]
Morgan Kaufmann, San Mateo, CA, 1989.

J. Setubal
J. Meidanis

Introduction to Computational Molecular Biology [Google]
PWS Publishing Company, Boston, 1997.

J. Shawe-Taylor
N. Cristianini

Kernel Methods for Pattern Analysis [Google]
Cambridge University Press, Cambridge, UK, 2004.

A.J. Smola
P.L. Bartlett
B. Schölkopf
D. Schuurmans(eds)

Advances in Large Margin Classifiers [Google]
MIT Press, Cambridge, MA, 2000.

Johan Suykens
Gábor Horváth
Sankar Bau
Charles Micchelli
Joos Vandewalle (eds)

Advances in Learning Theory: Methods, Models and Applications [Google]
IOS Press, Amsterdam, 2003.

Ya.Z. Tsypkin

Adaptation and Learning in Automatic Systems [Google]
Academic Press, New York, 1971.

Ya.Z. Tsypkin

Foundations of the Theory of Learning Systems [Google]
Academic Press, New York, 1973.

L. Valiant
M.K. Warmuth (eds)

COLT'91: Proceedings of the Fourth Annual Workshop on Computational Learning Theory [Google]
Morgan Kaufmann, San Mateo, CA, 1991.

Leslie Valiant

Probably Approximately Correct [Google]
Basic Books, New York, 2013.

Leslie Valiant

Probably Approximately Correct [Google]
Basic Books, New York, 2013.

Vladimir Vapnik

Statistical Learning Theory [Google]
John Wiley, New York, 1998.

V.N. Vapnik

The Nature of Statistical Learning Theory [Google]
Springer-Verlag, New York, 1995.

V.N. Vapnik

The Nature of Statistical Learning Theory (2nd ed) [Google]
Springer-Verlag, New York, 2000.

Martin J. Wainwright
Michael I. Jordan

Graphical Models, Exponential Families, and Variational Inference [Google]
NOW, Boston, 2008.

Michael S. Waterman

Introduction to Computational Biology [Google]
Chapman and Hall, London, 1995.

S. Weiss
C. Kulikowski

Computer Systems that Learn [Google]
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

D. Wolpert (ed)

The Mathematics of Generalization: Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning [Google]
Addison-Wesley, Reading, MA, 1994.



Contact

Luc Devroye
School of Computer Science
McGill University
Montreal, Canada H3A 2K6
lucdevroye@gmail.com
http://cg.scs.carleton.ca/~luc