ON THE POINTWISE AND THE INTEGRAL CONVERGENCE OF
RECURSIVE KERNEL ESTIMATES OF PROBABILITY DENSITIES

*
Luc P. Devroye

ABSTRACT. Let Xl,.. .,Xn be independent Rd—valued random vectors

with a common density £, and let f be estimated by
fn(x) = n_l b3 h;dK((x-Xi)/hi), where {hn} is a sequence of positive
numbers and K is a bounded density on Rd.

Several results related to the weak or the strong pointwise
consistency of f are discussed and derived in the first part of the
paper. In the second part, weak conditions on {hn} are given insuring
thatf |fn(x) - f(x)ldx g 0 1in probability (or with probability one) for

all densities f.

1.  Introduetion.

Let Xl,}(z,... be a sequence of independent identically distributed
random vectors taking values in Rd with a common unknown density f£. To
estimate recursively the density for each x € Rd we consider the

Wolverton-Wagner-Yamato estimate
-1 o~ .-d
@ £, =n Elhi K((x-X;) /h,)

(see [25-27]), where K is a given bounded probability density and {hn}

is a sequence of positive numbers satisfying

n
(2) hn =+ 0
and

dn
(3) n hn + o

The estimate fn is a recursive version of the celebrated Parzen-Rosenblatt

kernel estimate [20], [23]
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Sl
(4) g, (x) = n 1;1 h " K(G=X)/h)

For surveys on nonparametric density estimation, the reader is referred
to Wegman [24] and Revesz [22].

It is well known that &y is weakly pointwise consistent if (2)

and (3) hold, if £ is continuous at x, and if

(5) x| kG 0 as [|x]| > =

(see [6] and [20]). 1If, to these conditions, we add

(=]
(6) 3 & e Pw s foralls 0v2 O ,

then 8, is strongly pointwise consistent as well, that is, gn(x) 3 fx)
with probability ome (w.p.1) [14]. Limiting himself to bounded continuous
f, to bounded Riemann-integrable K and to sequences {hn} satisfying

h 30 and
n
(7) (n+k) hd = lcon hd (some ¢ > 0, all n,k > 0)
n-klc & n ? ? 2

Deheuvels [12] shows that gn(x) b f(x) w.p.1l for all x if and only if
(8) n hﬁ/log log n LI
Condition (8) is implied by

(9) n h:/log n3 e 5

which in turn implies (6) but is equivalent to (6) for sequences
satisfying (7). However, in the absence of (7), neither (6) nor (9) imply
d
Deheuvels' condition (8); e.g., let nhn = J; except when
k

n = Zk for some integer k, in which case we take nhi = log log n.

In the first part of this paper we discuss and prove similar
pointwise results for the Wolverton-Wagner-Yamato estimate (1). For
other recent work on recursive dersity estimation, the reader is

referred to the papers of Ahmad and Lin [2], Banon £31, Carroll E7l,
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Davies [8], Davies and Wegman [9], and Rejto and Revesz [21]. The
trouble with a recursive estimate like (1) is that the contribution of
Xi is weighted by h;d and that the estimate is therefore sensitive
to sudden decreases in the value of hn. Recently, Deheuvels [10-12]

proposed a particularly elegant estimate
o a\—q B
Gl on 2 K(GeX, ) /h)
i=1 i=1

which shares with (1) and (4) that it is a density on Rd and which has
the nice property that all Xi are seemingly equally weighted. (At

least, due to the boundedness of K, the difference En- En—l will

n—l""’hl') For d =1,

Deheuvels [10-11] shows that §n is strongly pointwise consistent if f

remain small even if hn is much smaller than h
and K are bounded densities, if £ dis continuous at x, and if

(10) h 320 and ¥ 0=,

Pointwise consistency is usually of limited value to the statistic-
ian. Fortunately, it is true that for a sequence of densities fn that
is almost everywhere weakly (strongly) pointwise consistent, the in
probability (w.p.l) convergence to 0 of ~[lfn(x) - f(x)|dx follows

(Glick [16]); that is, fn is weakly (strongly) consistent in L In

1
the second part of this report a variety of weak conditions on {hn} are

derived insuring the weak (strong) consistency in L. of fn' g and

1
fn for all densities f (i.e., f is not required to be bounded or

even to be almost everywhere continuous).

2= Main Results.

Let us first recall a pointwise consistency theorem for the Parzen-

Rosenblatt estimate (see [6], [141, [201).

THEOREM 1. Let {hn} satisfy (2), (3), let K be a bounded probability
density, and let Condition A hold.
Condition A. One of the following is true:
(1) x 18 a continuity point of £ and (5) holds,
(12) =x 18 a Lebesgue point of £ and £ is bounded on Rd,

(iti) =x 1is a Lebesgue point of £ and K has compact support.

= JiSk=



Under these conditions, gn(x) 3 fx) in probability. If, in addition,
(6) holds, then g (x) 2 £(x) w.p.1.

It is worth recalling that x is a Lebesgue point for £ if

-d
P ‘f |[£(y) - £(x)|dy +0 as p + 0,

|y=%]|=< o
that all continuity points are Lebesgue points, and that almost all
points x are Lebesgue points. Using the techniques of proof of
Theorem 1, it is shown in the Appendix that fn converges pointwise to

f wunder essentially the same conditioms.

THEOREM 2.  f_(x) 3 f(x) in probability if {hn} satisfies (2), (3),
if K 1is a bounded probability density, and if Condition A holds. If,
additionally, (8) is true, then fn(x) B ) w.p.1.

Proof of Theorem 2. The proof parallels in several respects the proof
of Theorem 1 which can be found in [14]. The main tool we need is an
inequality due to Bemnett [4] for the sum of independent random

variables’ ¥.,....Y with B{Y } =0, E{Y’} < 0%, and [¥.] < b:
il n i i st

IA

n
P ndl E: Yi 2> e 2 exp {—n(s/Zb)((l+02/2be) log (1+2be/02) - 1)}
i=1

2 exp {~n52/2(02+be)} 5

A

where the latter inequality follows from the fact that log (1+u) > 2u/(2+u)
for all u > 0. Now, let € > 0 be arbitrary and note that

[£,G) - £ = £ () - E{f ()} + |E{f )} - £0)] .

From Lemma 2 (see Appendix) we know that E{Yn} B fx) if
Yn = h;d K((x—xn)/hn). Hence, by the Kronecker lemma [18, p. 238],

sl

-1 n
E(f )} =n" 3, E(L} > £(x) .
i=1
Next, if ¢ = sup E{Yi} and M = sup K(x), then E{Yi} < cMh;d and
o X

|¥.-E{Y }| = Mh d.  Therefore,
gt i

—L16F=



n
POIE, () - ELE ()} > ) = n'lz:(yi-s{yi}) g

i=1
< 2 exp {—nez/Z(chn + Mszn)} 5
where & = sup th. The in probability part of Theorem 2 follows from

i<n
Lemma 1 and (3). A well-known version of the strong law of large numbers

(Loeve [18, p. 253]) asserts that if iYnf < Ln for all n and some

L < =,(which is the case here since the hn are positive numbers and

nhi/log log n z =), then
-1 L n
n iZ=:1(Yi - E{Y,}) Y0 w.p.l

if and only if for every = > 0

S+
> B ZE X e D e h <
k=0 ok 5

i=2"+1

We thus conclude that £ (x) - E{f_(x)} 20w.p.1 if

fi {2 exp —(ZkEZ/(Z(cM+Ms)) inf hi} < @
k=0

i<2
which is implied by

2E hi/log k § = .

iSZk

This in turn follows from n inf hg/log log n.3 ® and
isn

nhi/log log n 2 o (Lemma 1).

Remark 1. (Conditions for weak consistency). An application of
Chebyshev's inequality allows a relaxation of condition (3) for weak

consistency. We will see that it can be replaced by

n
(11) e Z_: h'id Do,
i=1

d
n

(Indeed, by Toeplitz's lemma [18, p. 2381, nh 5« entails
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n
=) —d = =
. e bl B it Site)
4 i : ak
i=1 i=1
5 . d -1 k : 5
The example in which hn =n except when n = 2, in which case
d -

hn =n l, is one satisfying (11) but not (3). However, for monotone

{hn} both conditions are equivalent in view of
2n 2n
= -d = = = = =
(20) 2 1_21 nd 2 () 2 12;;1 i > et = e

They are also equivalent whenever (7) holds with ¢ = 1. To see this,
assume that (11) is true but nhi#@ «, In view of (7) this in turn

implies that nhg < M < =, But then

n n
22 Y 4 za? Y ameafs@en - s o,
=1 * i=1
contradicting (11). We note that the weak consistency part of Theorem 2

under Condition A(i) can also be found in Ahmad and Lin [2].

Remark 2. (Conditions for strong consistency). The strong consistency of
fn was earlier established by Davies [8] under stricter conditions.
Deheuvels [12] has shown that under weak additional assumptions on

£, K, and {hn]’ (8) is necessary for the strong pointwise consistency

of fn' In the next theorem we will see that (8) can be replaced by

@

(12) S o h A
n=1 n

without compromising the strong pointwise consistency of fn' The proof
of this is based on Kolmogorov's second moment version of the strong law
of large numbers. The sequence {nhi (log n)/(log log n}} is one
satisfying (8) and (9) but not (12) since {1/n(log n)(log log n)} is mnot

summable. On the contrary, the sequence

satisfies (12) but not (3), and thus certainly not (6), (8), or (9). Thus
the conditions (8) and (12) do not imply each other.
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Suppose next that {hn} is sufficiently well-behaved so that
Deheuvels' quasi-monotonicity condition (7) holds with ¢ = 1. With

some work one can show that (7) and (12) imply (9):
nhgllog n3e,

Thus, for nicely behaved {hn} (e.g-, nhi is asymptotically monotone),
Theorem 2 is stronger than the said theorem in which (12) replaces (8).
(The proof of the latter implication uses the facts that for nondecreasing

fo Fopnhiyal < ollsflandionly ZE8LE 2%/a < w, and that I l/e < =
n n o n

5 : n : d
implies no_ + 0, to conclude, upon taking o = nh that
n n n’

I l/(nan) < o yields an/log n3a)

We now state the announced theorem.

THEOREM 3. If {hn} satisfies (2), (11), if K <is a bounded density,
and if Condition A holds, then B{(f_(x) - £(x))%} B 0. If, additionally,
(12) holds, then fn(x) 5 f(x) w.p.1 as well.

Proof of Theorem 3. We need only show that ‘fn(x) - E{fn(x)}l 20 in
the quadratic mean or with probability one. By Chebyshev's inequality

and (11),

v

-2 2
P{|fn(x) RN e} < ¢ E{(fn(x) - E(E (D) }

n
< (ne;)'_2 Z: E{Yi}
i=1

A

-2 L -d n
(ne) 1;]_ cMhi = 0.

This proves the first part of Theorem 3. By Kolmogorov's condition for
the strong law of large numbers (see [18, p. 253]) we know that

£ (%) - E{(f (x)} 3 0 w.p.1l if

n n

=

Y Bv’i/n® < o .
n

n=1

-d
Using E{Yi} < cMhn , this condition reduces to (12). Actually, the
inequality of Hajek and Renyi [17, pp. 258-260] provides us with an

upper bound

— b9 =—



@

# i, LiiE cmb dep 2.2
Pl U {|f (x) - E{f (x)}] 2 s}} < (ke) }:E{Yn} +e Y E{Y_}/n
=% " & n=1 n=k+1

which tends to 0 as k + » for all € > 0.

Notice that fn and g, are valid densities on Rd. Thus, we can
apply a theorem of Glick [16] which states that if {fn} is a sequence
of densities converging to a density f din probability (w.p.l) for
almost all x with respect to Lebesgue measure, and if the fn are
Borel measurable functions of x, Xl""’xn’ then ./an(x) - f(x)|dx Zo
in probability (w.p.l). Thus, the following theorem is a corollary to

Theorems 2 and 3.

THEOREM 4. Let K be a bounded probability density and let any one of
the following conditions hold:

(Z) f is almost everywhere continuous and (5) holds,
(G5 f <s bounded,

(ii1) K has eompact support.

If (2) and (3) hold, then ~f|gn(x) - £(x)|dx } 0 in probability. If also
(6) holds, then l]|gn(x) - £(x)|dx 2o w.p.1. If (2) and (11) hold, then
f|fn(x) - f£(x)|dx 50 in probability. If (2),and (8) or (12) hold, then
JI£ 60 - £ ]ax 2 0 wp.1.

We emphasize that Theorem 4 holds for all densities f if K has
compact support, i.e., if for some finite M, K(x) = 0 whenever
[|x]| > M. The part of Theorem 4 involving g, was shown by Devroye and
Wagner [15] for kernels K satisfying a condition weaker tham (iii),

namely

sup k(y) dx < = |
yi [yl > [l=l|

Remark 3. (Convergence in L2 of density estimates). Because of its
mathematical attractiveness, several authors consider -[(fn(x) - f(x))zdx
as a global measure of the deviation of fn from f. For instance,
Wagner [26] shows that jkfn(x)—fﬁx))zdx Bo w.p.1 if K is a bounded
density with _f|{xJ|K(x) dx < =, if h =~ is nonincreasing, if

z hn/n < =, if (12) holds, and if f satisfies a uniform Lipschitz

condition.
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A variety of results are available regarding [fgn(x)—f(x))zdx
(see Bickel and Rosenblatt [5], Ahmad [1] and Nadaraya [19]). Most of
them are concerned with the rate of convergence to 0 of the mean
integrated square error. It is kmown that if K <®is a bounded density
satisfying (5), if (2)-(3) hold, and if f2 is integrable and f is
almost everywhere continuous, then E {.[(gn(x) - f(x))zdx} L0 13l TE

in addition
nhidllog n%e »

Nadaraya [19] shows that jkgn(x) - f(x))zdx %o w.p.1l. (The latter
condition is not necessary. Nadaraya's argument remains valid if we
replace it by (9) and use Bennett's inequality [4] in the proper places.)
In any case, all these results are only applicable if f2 is integrable.
Since f 1is unknown in advance this condition cannot be checked. Theorem
4 shows that the situation is not all that bad since the integrated Ll
error converges to 0 w.p.l for all densities £ (under mild conditions
on the sequence {hn} which we can pick anyway) and all the estimates
discussed in this paper. This result is not surprising since Ll, not
LZ’ is the natural space in which the properties of densities should be
studied. It is comforting to know that the requirement that f be

almost everywhere continuous can be dropped altogether.

3. A Note on the Dehewvels Estimator.

In this section we complement some results of Deheuvels [10-12].

THEOREM 5. If {hn} satisfies (10), <f K <s a bounded probability
density and 1f Condition A holds, then fn(x) 1 f£(z) w.p.l.

Proof of Theorem 5. Notice first that

— L
E(f_(x)} =(12=:1 hi)

1 n
3 wd By},
=1L B

where Yi is defined as in the proof of Theorem 2. Using Lemma 2
(E{Yn} 5 f(x)) and Toeplitz's lemma [18, p. 238] we see that I hd =

= n
implies that E{fn(x)} L3 f(x). Thus we need only show that

%n(x) - E{fn(x)} 5o w.p.l. By Loeve's criterion for the strong law of

large numbers [18, p. 253] this follows if
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Y EK ((x—xn)/hn)}/<i§l hi> <=,

n=1
2. d d
But we know that BE{K°((x-X )/h )} < Mh_ E{Y } £ Mch . Theorem 5 now
S e n n n

3 ey afdenssed m
follows since E: hn = implies

n=1
o n 2
D ho AR
n=1 o=

To see this, assume that hl > 0 and notice that

IA
IE
%

THEOREM 6. If {hn} satisfies (10), if K s a bounded probability
density and if any one of the following conditions hold,

(<) f 1s almost everywhere continuous and (5) is satisfied,
(i7) f 48 bounded,

(i22) K has compact support,
then [|E () - £Go|ax 2 0w.p. 1.
One should notice that (10) is weaker than (11) since
n n -1
Y alea? (T onf) 2o
i=1 = i=1

Here we used the following inequality valid for all sequences {hn}:

n n
(n_lz h;d><n S hi) i
=1 i=1

The conditions (10) cannot be improved upon in Theorem 5 due to a result
by Deheuvels [12] who shows that under some additionmal restrictions on f,
K, and {hn}, in order for fn(x) 2 f(x) w.p.1l, it is necessary that (10)
hold.
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Proof of Theorem 6. Theorem 6 follows from Theorem 5, Glick's result

[16]1, and the fact that almost all x are Lebesgue points for f.
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APPENDIX

1L . .
LEMMA 1. T a,b 20,a te, then an/bn + o 1f and only if

a_/(sup b.) s
n 2 i
isn

Proof. Notice that

a /b Z a /(sup b) 2 min(inf a./b. a /(Sup )
nonn ey >N T+ 1Tn oy i

Lemma 1 follows by first picking N large enough and then letting n

grow unbounded.

COROLLARY. The conditions nhg %« agnd n inf hi e are
i<n
equivalent. Furthermore, the conditions “hi/log logn 3« and
d :
n inf h,/log log n 2o are equivalent.

i=n

LEMMA 2. Let K be a bounded probability density, let Condition A hold,

and let h_ % o0. Then

~-d n
E{hn K((x—Xl)/hn)} 3 fx) .
Proof. We need only show that

as |[a,™ RCGy)/m ) E(p)ay - £

< [0 RCGey /) |-G [ay B o

Let S(a,p) be a closed sphere in 4 centered at o with radius p and

let (-)c denote the complement of a set. We can upper bound (13) by

(phn)'d f M| £ (y)-£(x)|dy
S(x,ph )

+ min(sup  K(y);(sup £(y)) f K(y)dy) ,
5°(x,p) 8% (x,p)
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where M = sup K(y) and p is chosen. The last term can be made small
by choice of p if either K has compact support or f 1is bounded.
The first term is small for large n if hn 20 and x is a Lebesgue

point of f. Expression (13) can also be upper bounded by

s £ - £+ £ . [ ke +relaw  [ly]1%e
5(x,p) §7(x,0/h ) §7(x,p/h )

If x 1is a continuity point of £, then we can make the first term
small by choice of p. The last two terms are small for large n if

(5) holds, if K is integrable, and if hn Zi0:
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